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Nucleation free-energy barriers with Hybrid
Monte-Carlo/Umbrella Sampling

M. A. Gonzalez,a E. Sanz,a C. McBride,†b J. L. F. Abascal,a C. Vegaa and
C. Valeriani*a

The aim of this work is to evaluate nucleation free-energy barriers using molecular dynamics (MD). More

specifically, we use a combination of Hybrid Monte Carlo (HMC) and an Umbrella Sampling scheme, and

compute the crystallisation barrier of NaCl from its melt. Firstly the convergence and performance of

HMC for different time-steps and the number of MD steps within a HMC cycle are assessed. The

calculated potential energies and densities converge regardless of the chosen time-step. However the

acceptance ratio of the Metropolis step within the HMC scheme strongly depends on the time-step and

affects the performance. It is shown that the acceptance ratio is close to 100% for time-steps of the

order of those commonly used in molecular dynamics runs. We then explore the results obtained with a

‘‘non-Metropolised’’ version of HMC where the MD trajectories are always accepted (omitting the

Metropolis criteria) and conclude that they are satisfactory for time-steps below 5 fs. Next, HMC is

combined with Umbrella Sampling (HMC/US) to compute the nucleation free-energy for both the

standard and the ‘‘non-Metropolised’’ HMC (using a small time-step) and in both cases find excellent

agreement with the reported values. To conclude, we explore approximations to the HMC/US technique

implementing HMC with isothermal–isobaric MD trajectories. The computed nucleation free-energy

curve is coincident, within the statistical error, with previous calculations.

I. Introduction

A meta-stable phase has to overcome a free-energy barrier in
order to transform into a thermodynamically stable phase. The
maximum of such a barrier corresponds to the emergence of a
critical nucleus of the stable phase within the meta-stable
parent phase. When the free-energy barrier is too high, the
probability of observing a critical cluster during the course of
a standard simulation becomes extremely low. Thus special
rare-event simulation techniques such as Metadynamics,1 Forward
Flux Sampling2 or Umbrella Sampling (US),3,4 are required to
improve the sampling efficiency and study the nucleation process.
US has been extensively used in combination with NpT/NVT
Monte Carlo (MC) to calculate nucleation free-energy barriers
for crystallisation,5–8 condensation9 and cavitation,10 to mention
just a few examples. In simple fluids, such as those composed of
Lennard-Jones or hard sphere sites, the use of US in combination
with Monte Carlo (MC/US) has given excellent results and a general

consensus concerning the nucleation barrier has been achieved.5–9

However, when dealing with molecular liquids such as water, the
situation is less well established (see ref. 11–13 and references
therein). Therefore, the calculation of free-energy barriers for
complex molecules is a matter of debate that deserves further
attention.

The use of MC/US requires the implementation of a bespoke
simulation code, which has somewhat restricted the number of
researchers using US to investigate nucleation. This last decade
has seen an upsurge in the use of highly optimised molecular
dynamics (MD) packages, such as GROMACS14 and LAMMPS.15

Furthermore, MD is more suitable for parallelisation than MC.
It seems then convenient to use MD to generate the input
configurations to US. The Hybrid Monte Carlo16,17 (HMC)
method was presented as a theoretically well founded scheme
to that end. However, little attention has been paid thus far to
the implementation of the HMC technique using popular MD
codes. This is one of the goals of this work. It is our hope that
this work will provide incentive for increased use of US as a
technique for the calculation of free-energy barriers.

Once the implementation of the HMC technique is validated,
one can combine it with Umbrella Sampling (HMC/US) to obtain
free-energy barriers.11,13,18,19 In this paper we calculate the free-
energy barrier for the crystallisation of NaCl from its melt and
compare it with that obtained by MC/US.20 Finally we also explore

a Depto. Quı́mica-Fı́sica I, Fac. Ciencias Quı́micas, Univ. Complutense de Madrid,

28040 Madrid, Spain. E-mail: cvaleriani@ucm.es
b Instituto de Quı́mica Fı́sica Rocasolano (IQFR), (CSIC), Serrano 119, 28006

Madrid, Spain

† Present address: Depto. Ciencias y Técnicas Fisicoquı́micas, Facultad de
Ciencias, UNED, Paseo Senda del Rey 9, 28040 Madrid, Spain.

Received 26th June 2014,
Accepted 19th September 2014

DOI: 10.1039/c4cp02817a

www.rsc.org/pccp

PCCP

PAPER

Pu
bl

is
he

d 
on

 1
7 

O
ct

ob
er

 2
01

4.
 D

ow
nl

oa
de

d 
by

 I
m

pe
ri

al
 C

ol
le

ge
 L

on
do

n 
L

ib
ra

ry
 o

n 
31

/1
0/

20
14

 1
0:

46
:0

3.
 

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c4cp02817a&domain=pdf&date_stamp=2014-10-17
http://dx.doi.org/10.1039/c4cp02817a
http://pubs.rsc.org/en/journals/journal/CP
http://pubs.rsc.org/en/journals/journal/CP?issueid=CP016045


24914 | Phys. Chem. Chem. Phys., 2014, 16, 24913--24919 This journal is© the Owner Societies 2014

approximations that can simplify the implementation of the HMC
technique while retaining most of its theoretical robustness.

II. Theoretical background
A. Hybrid Monte Carlo

The Hybrid Monte Carlo method16,17,21–24 uses molecular dynamics
micro-canonical trajectories (i.e. NVE trajectories) to sample the
canonical NVT ensemble. It consists of the following steps:

(1) Perform a micro-canonical (NVE) MD simulation starting
with a configuration whose momenta have been taken randomly
from a Maxwell–Boltzmann distribution at the temperature of
interest. The integration of the equations of motion must be
performed with a symplectic and time-reversible algorithm.

(2) Accept or reject the final configuration according to the
Metropolis acceptance criteria

min(1, exp�bDH) (1)

where b = 1/kBT and DH is the change in the system’s Hamiltonian
[H =

P
( pi

2/2mi) + U{rN}] after and before the MD run, i.e.,
DH = Hnew � Hold.

Using the terminology of ref. 22 the HMC technique may be
described as ‘‘Metropolised’’ thermostatted molecular dynamics. In
what follows, skipping step 2 will be denoted ‘‘non-Metropolised’’
Hybrid Monte Carlo, HMC(nM). Sampling in the isothermal–
isobaric NpT ensemble can be performed with an additional MC
step involving a change in the system’s volume.

B. Calculation of the free-energy barrier

The free-energy for the formation of a cluster of the stable
phase containing n molecules can be approximated by:9

bDG(n) = �ln(Nn/N), (2)

where Nn is the number of clusters with n molecules and N is the
total number of molecules. From long ‘‘brute-force’’ simulations it is
possible to estimate the first part of the barrier DG(n) up to a
maximum size nref. Beyond that size one needs to resort to US to
compute DG(n) because the likelihood of having clusters containing
more than nref molecules is too low to be directly sampled in a
standard simulation. If a cluster of size n 4 nref appears in the
system it will most likely be the largest cluster, n*. Within the US
scheme the simulation is biased to sample configurations contain-
ing a cluster of size n* around n0. This is achieved by adding a
harmonic term of the form

o[n*(rN), n0] = 1
2k[n*(rN) � n0]2 (3)

to the potential energy, where n*(rN) is the number of particles
in the biggest cluster as detected by a given order parameter
that depends on the particles’ coordinates rN, and k and n0

control the width and the centre of the ‘‘umbrella’’ respectively.
The free-energy that follows from a US run is

bDG n�ð Þ ¼ � ln
d n� rNð Þ � n�ð Þ
exp�bo n� rNð Þ;n0ð Þ

� �
w

þconstant: (4)

In this way a US simulation gives DG(n*), plus a constant, for
a certain n* interval. Several consecutive US simulations must

be performed to provide overlapping umbrellas whose n*
ranges from nref to the critical cluster size. Finally, all DG(n*)
sections are ‘‘glued’’ together and the resulting second part of
the barrier, for n 4 nref (which is lacking a constant), is in turn
glued to the first part of the barrier (for n o nref) obtained, as
above, in an unbiased simulation.

Umbrella Sampling simulations require the calculation of
n* by means of some order parameter. Such calculations can
be time consuming and, in practise, instead of computing n*
after each trial MC move, one usually runs an unbiased
trajectory consisting of the order of 101–102 MC sweeps and
accepts the configuration resulting from such a trajectory
according to:

accðold! newÞ ¼ min 1; e�b o n� rNnewð Þ;n0ð Þ�o n� rN
oldð Þ;n0ð Þ½ �

� �
: (5)

This procedure ensures the generation of configurations
according to e�b[U(rN)+o(n*(rN),n0)] where U is the intermolecular
potential energy.9,25–27

III. Simulation details

We calculate the nucleation free-energy barrier of NaCl from its
melt at T = 800 K and 825 K. For the ion–ion interactions we use
the Tosi–Fumi rigid-ion potential, which has the following
form:28,29

UijðrÞ ¼ Aije
B sij�rð Þ½ � � Cij

r6
�Dij

r8
þ qiqj

r
: (6)

This pair potential is written as the sum of a Born–Mayer
repulsion, two attractive van der Waals contributions and a
Coulombic interaction term.

We perform molecular dynamics simulations with the GRO-
MACS 4.5 package14,30 using the time reversible and symplectic
velocity Verlet algorithm. The particle mesh Ewald method31

has been used to calculate the long-range electrostatic forces.
We truncate the van der Waals part of the potential at 9 Å and
add long range corrections by assuming g(r) = 1 beyond this
cutoff.

The computed number density of ions in the bulk solid at
800 K and 825 K and 105 Pa is 0.041 Å�3, in agreement with
experiments.32 The density in the super-cooled liquid at the
same temperature and pressure is 0.034 Å�3.

All simulations are performed within a cubic simulation box
in conjunction with periodic boundary conditions. A super-
cooled system of the liquid at ambient pressure is obtained by
cooling the fluid phase to below the melting temperature. For
the present model, Aragones et al.33 have recently computed its
melting temperature to be Tm = (1082 � 13) K, which is very
close to the experimental melting temperature of Texp

m = 1074 K.
Thus, using constant pressure Monte Carlo simulations, we
cool the system down to T1 = 800 K and T2 = 825 K, (corres-
ponding to 26% and 23.8% under-cooling respectively), at
which point we study crystal nucleation.

To distinguish between solid-like and liquid-like particles,
and to identify the particles belonging to a solid cluster, we
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used the same local bond order parameter as in ref. 20. First we
compute a normalised complex vector q4 for every ion i, whose
m components are:

q4;mðiÞ ¼

1

NbðiÞ
PNbðiÞ

j

Y4;m yi; j ;fi; j

� �

P4
m¼�4

q4;mðiÞ
�� ��2� �1=2

; m ¼ ½�4; 4�; (7)

where Nb(i) is the number of neighbours of particle i within a
cut-off radius of 4 Å (the first minimum in the Na–Cl radial
distribution function). Then we compute the scalar product
P4

m¼�4
q4;mðiÞ � q4;m�ð jÞ

� �
for every particle i with each of its

neighbouring particles j. Particle i would then be considered
as ‘solid-like’ if at least 6 of its scalar products are greater than
0.35. Finally two ‘solid-like’ particles are considered to be
neighbours in the same cluster if they are closer than 3.4 Å.

IV. Results

Initially we simulate molten NaCl at 800 K and 1 bar using HMC
and discuss the dependence of the results on the chosen time-step
or the number of MD steps within a HMC cycle, considering both
the ‘‘Metropolised’’ and ‘‘non-Metropolised’’ versions of HMC.
Next we combine HMC with Umbrella Sampling (HMC/US) to
obtain free-energy barriers and compute the nucleation free-energy
of NaCl from its melt, again at 800 K and 1 bar, for both the
‘‘Metropolised’’ and ‘‘non-Metropolised’’ versions of HMC, and
compare it with that obtained by MC/US in ref. 20. To conclude, we
explore approximations of the HMC/US technique, implementing
HMC with the molecular dynamics trajectories now sampling the
NpT ensemble, and compute the nucleation free-energy of NaCl
from its melt at 800 K and 825 K.

A. Hybrid Monte Carlo

Fig. 1 represents the potential energy of molten NaCl at 800 K
and 1 bar as a function of the time-step Dt used in the
molecular dynamic runs. In all cases the number of HMC
cycles is 30 000, where a HMC cycle consists of 50 steps of the
MD NVE trajectory, whose final configuration is accepted or
rejected based on the Metropolis criteria eqn (1), along with an
attempt to change the system’s volume (based on the usual
accepting prescription in NpT MC runs). Results were obtained
for a system composed of 600 NaCl pairs.

It can be seen that the results for the internal energy are
independent of the time-step for the Metropolised HMC, even
though the acceptance ratio of the Metropolis criteria is
strongly dependent on Dt. For low values of Dt the acceptance
ratio is close to 100% (notice that this acceptance ratio refers to
that of eqn (1)). This suggests that, for small time-steps, a
simple approximation could be used: the Metropolis criteria
test may be omitted altogether given that the configurations
obtained after the MD runs are always accepted. The results
obtained with this ‘‘non-Metropolised’’ scheme22 are also
shown in Fig. 1. It can be seen that for Dt up to approximately

2 fs, the results of the non-Metropolised scheme coincide with
those for the full (Metropolised) HMC procedure. The same
conclusions may be reached from the HMC calculations of
Holzgräfe et al.23 for a Lennard-Jones system, and Allen and
Quigley22 for a soft-repulsive potential. Naturally, for larger
values of Dt the non-Metropolised results increasingly depart
from the Metropolised ones, although the difference is still not
too large (0.2%) even for a time-step of 10 fs.

It could be assumed that a large time-step in conjunction
with a small number of MD steps would be the optimal choice
in order to reduce computational time. However, due to the
reduced acceptance ratios encountered using large time-steps
this may not be the case. One may wonder which is the best
combination leading to the highest computational efficiency.
By computational efficiency we mean the time required to
obtain the potential energy (or any other thermodynamic
quantity) within a given uncertainty. To evaluate this we split
the simulations into 25 blocks and increase the number of MD
cycles until the standard deviation of the sub-averages is below
a given threshold. The results are shown in Fig. 2.

All the curves for a given time-step exhibit a minimum,
indicating that for each time-step there is an optimum value of
the number of MD steps. The CPU time needed to obtain the
best accuracy is similar for all values of Dt. We conclude that the
optimal length of the MD runs is around 50 steps where large
values of the time-step are coupled to short MD trajectories.

B. Calculation of the free-energy barrier

An interesting application that can benefit from the use of
HMC is the calculation of free-energy barriers using Umbrella
Sampling.11,13,18,19 We undertake a similar study to that in the
previous subsection, this time to test the calculation of the free-
energy barrier of NaCl combining HMC and US. From the

Fig. 1 Potential energy (per mole of ions) of NaCl at 800 K and 1 bar
calculated via HMC for different MD time-steps with the MD trajectory set
to 50 steps. Blue and red points refer to data calculated with the full HMC
(‘Metropolised’) and the ‘non-Metropolised’ schemes, respectively (see
text). The dashed line is the mean value of the potential energy of different
full HMC runs. The continuous line represents the acceptance ratio of the
Metropolised–HMC (eqn (1), y-axis on the right side). The volume move
acceptance ratio was E60%.
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previous subsection it seems that the use of a large time-step
results in only a modest reduction of the computational cost;
from about 400 min for Dt = 10 fs to about 500 min for Dt = 2 fs
(see Fig. 2). In view of this, to compute the free-energy barrier
we shall use a time-step of 2 fs and NVE/MD runs of 100 steps. A
typical run consists of 30–70� 103 MD trajectories. The value of
the biasing constant, k, was chosen to be 0.15–0.20kBT which
produces an acceptance (eqn (5)) close to 20%. The values of n0

used in the Umbrella Sampling runs were 20, 30,. . .,120. For the
Umbrella Sampling calculations we used a system composed of
1500 NaCl pairs.

Fig. 3 shows the results for the second part of the calculation
of bDG (see eqn (4)) as a function of the cluster size n*. In the
figure we include calculations performed with both the full
(Metropolised) HMC/US and the non-Metropolised (HMC(nM)/US)
scheme. The uncertainty of each bDG section is about 0.1, thus the
overall uncertainty of the second part of the barrier is of the order

of 0.5, significantly larger than the difference between the HMC/US
and HMC(nM)/US curves.

To calculate the entire free-energy barrier we also evaluate
its initial part, which has been computed according to eqn (2)
with nref = 17. The second part shown in Fig. 3 is then ‘‘glued’’
to the first, thus obtaining the whole free-energy barrier. This
procedure introduces some uncertainty in the complete calcu-
lation, which we estimate to be slightly larger than�1kBT. Fig. 4
shows the whole free-energy barrier as a function of the number
of particles in the crystalline nucleus. Given that the first part is
common to all schemes the differences between the results are
all well within the estimated uncertainty of the calculations.
Fig. 4 also shows the results reported for the same system using
a MC/US scheme.20 The difference at the top of the barrier is
about 1kBT, indicative of an excellent agreement among all
schemes. A summary of the numerical results obtained with the
different approaches for the top of the barrier, and for the size
of the critical cluster can be found in Table 1. As shown in Fig. 4
and Table 1, HMC(nM)/US, HMC/US and MC/US20 predict the
same shape of the free-energy barrier, the same height (within
the combined error bars) and the same critical cluster size
(within 10 particles).

The agreement between MC/US and HMC/US was to be
expected, but the fact that HMC(nM)/US predicts the features of

Fig. 2 Computer time (t) to obtain the potential energy within a given
uncertainty as a function of the length of the MD trajectories for several
time-steps Dt. Lines are a guide to the eye. Results were obtained at
T = 800 K and p = 1 bar.

Fig. 3 Second part of the calculation of the free-energy barrier (eqn (4))
as a function of the cluster size n*. HMC/US refers to calculation with the
HMC coupled to Umbrella Sampling. For the results labelled as HMC(nM)/
US the non-Metropolised approximation is used. Lines are a guide to the
eye. Results were obtained at T = 800 K and p = 1 bar.

Fig. 4 Free energy barrier obtained merging the first (unbiased) and
second parts (eqn (2) and (4)). For the results labelled as HMC(nM)/US
the non-Metropolised approximation is used in HMC. HMC/US refers to
the calculation with the HMC method coupled to an Umbrella Sampling.
For comparison we have also shown the reported results using a MC/US
scheme.20 The HMC(nM-NpT)/US corresponds to a non-Metropolised
approximation coupled with short NpT-MD runs. Results were obtained
at T = 800 K and p = 1 bar.

Table 1 Top of the nucleation free-energy barrier (bDGcrit) and the
corresponding value of the critical cluster (ncrit*) for each barrier reported
in Fig. 4. Results were obtained at T = 800 K and p = 1 bar

bDGcrit ncrit*

HMC(nM)/US 23.8 115
HMC/US 23.5 116
MC/US20 24 120
HMC(nM-NpT)/US 22.6 114
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the free-energy barrier is a relatively surprising conclusion, though
understandable when considering the results shown in Fig. 1.
In summary, for a small time step (i.e., 2 fs) it is possible to
accurately describe the free-energy barrier within the HMC(nM)/
US approximation.

Our HMC implementation is performed in combination
with the GROMACS MD package. With a simple wrapper script
we iterate over a number of cycles, each consisting of a call to
an NVE MD trajectory with moments chosen from a Gaussian
distribution, followed by a Metropolis acceptance check of the
final configuration (skipped in the approximate HMC(nM)
scheme). To maintain the pressure constant we also perform
a trial volume-change and accept it using the standard MC
prescription of the NpT ensemble. This is entirely correct, but
also very inefficient since one needs to make a call to the MD
code from the wrapper script just to obtain the energy of the
system for the trial volume.

To avoid the expensive volume move, we tried a new
approach that, though approximate, may provide reasonable
results. It consists of generating new configurations using short
MD runs in the NpT ensemble, and accepting/rejecting the final
configuration using the bias potential with the prescription
provided in eqn (5). In this way, both the particles’ positions
and system’s volume are modified in one go, thus avoiding the
need for a specific trial volume move (and the increase in
computational efficiency that this entails). Notice that this is an
approximate route since we are not applying a Metropolis
scheme to the final configuration generated with the short
MD NpT runs. A correct implementation of this algorithm would
require the use of a Metropolis scheme similar to that used in
eqn (1), where the system’s Hamiltonian, H, is now replaced by
the conserved energy of the MD NpT run (denoted H̃).34 The
expression of this conserved quantity depends on the particular
thermostat and barostat employed. Bussi et al.35 and Leimkuhler
and Reich36 have expressed the conserved quantity H̃ for different
thermostats, indicating that correct results in the NVT ensemble
can be obtained by generating configurations which are accepted
or rejected according to min(1, exp�bDH̃) (thus correcting for the
error introduced by a finite time step). In accordance with the
results presented above, a way to avoid the implementation of
such a Metropolis test is to use a small time step in the MD runs.
We denote this scheme HMC(nM-NpT).

Let us now analyse whether this approximate route produces
reasonable values for the free-energy barrier. We make use of
the velocity-rescaling thermostat35 and the Parrinello–Rahman
barostat37 with a relaxation time of 0.2 ps. The time step is set
to 1 fs and the MD NpT runs consisted of 200 steps. Notice that
the acceptance ratio for HMC depends more on the time step
than on the length of the MD runs (see Fig. 4 of ref. 23).
A simple bespoke code is used to evaluate n* at the end of
each trajectory in order to decide, via eqn (5), whether it is
accepted or not. If a trajectory is accepted, the last configu-
ration of the trajectory is used as a starting point for the
subsequent one. In the case of rejection, the first configuration
of the trajectory is used to start the next one. In both cases,
upon continuing the simulation, we re-assign the momenta at

random from a Boltzmann distribution consistent with the
temperature of interest.

A first check is to compare the distribution of the largest
clusters obtained using the HMC(nM-NpT) approximation with
that provided by the ‘‘exact’’ (to within the statistical error)
HMC/US scheme.

The results, shown in Fig. 5 for the umbrella around
n0 = 50, indicate that both methods lead to nearly identical
results. We may then compute the second part of the free-
energy barrier using the HMC(nM-NpT) approach. The free
energy barrier calculated in this manner is shown in Fig. 4 and
Table 1. The HMC(nM-NpT) results at 800 K agree with those
of the ‘‘exact’’ schemes MC/US and HMC/US within the
statistical noise.

Moreover, in order to ensure that the agreement observed at
800 K is not fortuitous, we have repeated the free-energy barrier
calculations at 825 K.

Fig. 5 Normalised probability distribution at 800 K and 1 bar of the largest
cluster size obtained from Umbrella Sampling runs using n0 = 50 and k =
0.20kBT. Results obtained with HMC/US are represented with points.
Results obtained with HMC(nM-NpT)/US are represented by a continuous
line. In both cases 240 � 103 MD trajectories (2 fs and 100 MD steps each)
were used.

Fig. 6 Free energy barrier at 1 bar and 825 K computed using HMC(nM-
NpT)/US, obtained merging the first (unbiased) and second parts (eqn (2)
and (4)). For comparison we have also shown the reported results using a
MC/US scheme under the same thermodynamic conditions.20
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Fig. 6 shows that, again, the HMC(nM-NpT) scheme yields
results comparable to the ‘‘exact’’ ones.

V. Conclusions and discussion

The aim of this work was to investigate the evaluation of
nucleation free-energy barriers using widely used molecular
dynamic packages such as GROMACS or LAMMPS. Our present
work is based on GROMACS, but most of the procedure we have
used can be equally applied to LAMMPS. From the variety of
numerical schemes developed to evaluate the nucleation free-
energy barrier, we focus on the combination of the Hybrid
Monte Carlo with the Umbrella Sampling method because it
can be easily implemented. We have chosen to compute the
crystallisation barrier of NaCl and compare it to the previously
reported data using MC/US.

The first step we undertake is to examine whether the
implementation of these packages is able to produce consistent
results for the thermodynamic properties of NaCl in the context
of HMC. We have shown that the procedure converges to the
same value for the potential energy, irrespective of the selected
time-step. As expected, the acceptance ratio of the Metropolis
step strongly depends on the time-step. This implies that the
computational efficiency of the overall method must be care-
fully checked. The optimal performance of the method is
obtained for runs of between 25 and 100 steps, depending on
the time-step. Interestingly, for the smallest time-steps, close to
and below those usually employed in MD simulations, the
acceptance ratio is only slightly below 100%. This suggests that
when using a small time-step the Metropolis acceptance criteria
may be omitted. We then analyse to which extent this ‘‘non-
Metropolised’’ HMC(nM) approximation is able to account for
the thermodynamic properties of the system. We conclude that
for time-steps below 5 fs the results are acceptable (depending,
of course, on the desired accuracy).

Once we have the optimised parameters of the HMC, we can
tackle the calculation of the free-energy barrier by coupling the
HMC to the Umbrella Sampling method. We demonstrate that
the barriers obtained with the full HMC/US and the approx-
imate HMC(nM)/US (using a small time-step) schemes are
coincident to within statistical uncertainty. Moreover, these
results are in excellent agreement with previous calculations
using a combination of Monte Carlo and Umbrella Sampling.20

The implementation of HMC is extremely simple and can be
performed using MD packages such as GROMACS or LAMMPS.
It requires the writing of a simple wrapper script iterating over a
number of cycles, each consisting of a call to the NVE MD
trajectory with moments chosen from a Gaussian distribution,
and to the Metropolis acceptance check of the final configuration
(skipped in the approximate HMC(nM) scheme). The calculation
of the molecular interactions can be performed entirely with a
well tested and extremely efficient external MD package. Thus, the
effort of implementing sophisticated and efficient simulation
techniques can be completely avoided. Moreover, the calculation
of free-energy barriers incorporating the US sampling into the

HMC method does not involve the evaluation of the molecular
interactions but that of the biasing potential, which is much
simpler. Even though MD is more suitable for parallelization
than MC, it is not so clear a priori whether launching short
MD trajectories with a script wrapper is computationally more
efficient than using an integrated MC/US scheme. The relative
efficiency will strongly depend on the system size, on the number
of steps of the short trajectories, and on the specific implementa-
tion of the MD and MC codes. In any case for the system
considered in this work the combination of MD and US was
significantly more efficient (from a computational point of view)
than the combination of MC and US.

If one wishes to perform a study at constant pressure a
volume move must be added to each cycle. This may be easily
implemented in the wrapper script by two calls to the MD
package in which the volume of the system is modified via
trajectories consisting of a single step. Since MD programs
usually require an initialisation period before starting calcula-
tions, calling the MD code for a single step may somewhat
degrade the computational efficiency of the overall process. For
this reason it is convenient to substitute the HMC methods
based on the microcanonical ensemble for a method based on
the isothermal–isobaric ensemble, thus avoiding any volume
moves. This HMC-NpT must be based on a magnitude con-
served throughout the trajectory (the idea of conserved magni-
tudes associated with a given barostat/thermostat has been
already reported in the literature by other authors). Since the
general features of the HMC-NpT method are similar to those
outlined in this work for the HMC-NVE scheme, we may
assume that, for small time-steps, the Metropolis acceptance
check of each cycle may be skipped. In accordance with this
idea, we have also calculated the free-energy barrier of NaCl
crystallisation using the approximate HMC(nM-NpT) combined
with the US method. The results are indistinguishable (to
within the statistical noise) to those obtained in this work
using the rigorous HMC/US procedure and to previous MC/US
calculations.

To summarise, we have shown for the first time that free-
energy barriers for nucleation obtained from different HMC
schemes are the same (within the uncertainty) as those pre-
viously obtained using the standard MC/US scheme. It is also
shown that those calculations can be performed easily with a
molecular dynamic package such as GROMACS. Thus HMC
techniques can indeed be useful in the future to obtain
nucleation free-energy barriers for complex/molecular systems.
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