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The phase diagram of water from quantum simulations
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The phase diagram of water has been calculated from the TIP4PQ/2005 model, an empirical rigid

non-polarisable model. The path integral Monte Carlo technique was used, permitting the

incorporation of nuclear quantum effects. The coexistence lines were traced out using the

Gibbs–Duhem integration method, once having calculated the free energies of the liquid and solid

phases in the quantum limit, which were obtained via thermodynamic integration from the

classical value by scaling the mass of the water molecule. The resulting phase diagram is

qualitatively correct, being displaced to lower temperatures by 15–20 K. It is found that the

influence of nuclear quantum effects is correlated to the tetrahedral order parameter.

1 Introduction

Ever since the monumental work undertaken by Bridgman in

19121 there has been intense and continued interest in the

phase diagram of water.2,3 The prediction of the phase diagram

serves as a severe test for any model of water.4,5 Although the

first computer simulations of water were performed in 1969 by

Barker and Watts6 and in 1971 by Rahman and Stillinger,7 the

calculation of the complete phase diagram was only recently

undertaken, using the classical models TIP4P and SPC/E.8

Although the TIP4P model provided a qualitatively correct

phase diagram, there was room for improvement (i.e. the

melting point of ice Ih was situated at around 230 K). Con-

sequently a new re-parameterisation, named TIP4P/2005, was

proposed9 leading to a satisfactory description of a number of

properties of water.10,11 The TIP4P/2005 model is a rigid non-

polarisable model designed for classical simulations. In an

indirect fashion TIP4P/2005 implicitly incorporates nuclear

quantum effects, at least at moderate to high temperatures.

However, the model fails when it comes to describing the

equation of state at low temperatures12 or Cp.
13 The origin of

the failure is the use of classical simulations to describe the

properties of water. Quantum effects are present in water14–19

even at ‘‘high’’ temperatures, due to the particularly small

moment of rotational inertia, engendered by the low mass of

hydrogen, in conjunction with the relatively high strength of the

intermolecular hydrogen bonds.

Nuclear quantum effects can be incorporated into con-

densed matter simulations via the path integral technique

proposed by Feynman20 (for an excellent review see ref. 21).

Barker22 and Chandler andWolynes23 showed that the formalism

of Feynman is equivalent, or ‘‘isomorphic’’, to performing

classical simulations of a modified system where each molecule

is replaced by a polymeric ring composed of P beads. The

TIP4P/2005 model, successful for classical simulations,24,25

was recently adjusted for use in such quantum simulations

(the charge located on the hydrogen atom was increased by

0.02e so as to maintain the same internal energy in a quantum

simulation as the TIP4P/2005 model in a classical simulation)

becoming the TIP4PQ/2005 model.12 This new variant of

TIP4P/2005 has been successful in describing the temperature

of maximum density26 of water and heat capacities.13 It is for

this model that we calculate the phase diagram.

2 Methods

2.1 Path integral Monte Carlo

The partition function, QNpT, for a system of N rigid

molecules in the NpT ensemble is given (except for an

arbitrary pre-factor that renders QNpT dimensionless) by

QNpT =
R
exp(�bpV)QNVT dV. In the NVT ensemble QNVT

is given by:
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where P is the number of Trotter slices or ‘‘replicas’’ through

which nuclear quantum effects are introduced (for P = 1 the

simulations become classical). Each replica, t, of molecule i

interacts with the replicas with the same index t of the
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remaining particles via the inter-molecular potential U, and

interacts with replicas t � 1 and t + 1 of the same molecule i

through a harmonic potential (connecting the centre of mass

of the replicas) whose coupling parameter depends on the mass

of the molecules (M) and on the temperature (b= 1/kBT), and

through a term (rt,t + 1
rot,i ), named the rotational propagator,

that incorporates the quantisation of the rotation and which

depends on the relative orientation of replicas t and t + 1.

Pioneering work was undertaken by Wallqvist and Berne,27

and by Rossky and co-workers28 who used an approximate

expression for the rotational propagator of an asymmetric top

(i.e. water). Another technique is that of the stereographic

projection path integral29 which has been used to study TIP4P

clusters.30 In 1996 Müser and Berne31 provided an expression

of the rotational propagator for spherical and symmetric top

molecules. Quite recently the authors have extended the

expression of Müser and Berne to the case of an asymmetric

top,32 which is the case of water. The propagator is a function

of the relative Euler angles between two contiguous beads and

of PT. The internal energy E can be calculated through the

derivative of the logarithm of QNVT with respect to b, and is

given by the sum of the kinetic and potential energy terms,

E = Ktranslational + Krotational + U = K + U. A more

complete account concerning path integral Monte Carlo

simulations of rigid rotors, and their application to water,

can be found in the article by Noya et al.33

2.2 Phase diagram calculation

The determination of the phase diagram of the quantum

system is undertaken in several steps. First the classical phase

diagram of the TIP4PQ/2005 model was calculated. To do

this, for each solid phase a reference thermodynamic state is

chosen and the free energy of the classical system is determined

using either the Einstein crystal34 or the Einstein molecule

methodologies.35 For the fluid phase the free energy of the

classical system is determined at a reference state by trans-

forming the TIP4PQ/2005 model into the Lennard-Jones

model, for which the free energy is well known.36 The free

energy of the classical system under distinct thermodynamic

conditions can be obtained via thermodynamic integration.

This permits one to determine an initial coexistence point of

the classical system for each phase transition by imposing the

usual condition of equal chemical potential for a given T and p.

Gibbs–Duhem simulations37 are then performed to trace out the

complete phase diagram. The procedure has been described in

detail in ref. 38. At the end of this first step the phase diagram

of the classical system is known.

In the second step the chemical potential of the quantum

system is determined at a reference thermodynamic state,

again for each phase of interest. It is worth describing this

procedure in some detail. Let us define the excess quantum free

energy as the free energy difference between the quantum

system and its classical counterpart at the same T and p:

Gex,Q = G � Gclassical (2)

Thus the free energy of the quantum system, G, can be

obtained if the classical and excess contributions are known.

The free energy of the classical system was determined in

the first step, so we shall now focus on the evaluation of Gex,Q.

One defines a parameter, l, whose purpose is to scale the

mass of the atoms of the molecule of water such that: mO =

lmO,0 = mO,0/l0 and mH = lmH,0 = mH,0/l0, where mO,0 and

mH,0 are the masses of O and H in the molecule of water,

where l0=1/l. Thus one can can slide from the quantum limit

(for which l0 = 1) to the classical limit (for which l0 = 0) by

simply changing the l0 parameter. From the relationship

G = �kT ln QNpT the derivative of the free energy with

respect to l0 can be calculated,39 obtaining:
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This is due to the fact that when the masses of all atoms of the

molecule are scaled by a factor 1/l0 the total mass, M, is also

scaled by a factor 1/l0. The same is true for the eigenvalues of

the inertia tensor and thus the energies of the asymmetric top

appearing in the rotational propagator are also scaled by a

factor l0. The average of the value in the angled brackets

should be performed for the value of l0 of interest. By using

eqn (3) in conjunction with the fact that the total kinetic energy

(with the translational and rotational contributions) is 3NkT for

the classical and for the quantum system in the limit of infinitely

heavy molecules, it can be shown that the chemical potential of

the quantum system m can be obtained from the expression:

m
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To determine the integral of eqn (4) (i.e. Gex,Q/NkT) it is

sufficient to perform simulations at decreasing values of l0, to
determine the integrand for each considered value of l0 and
subsequently implement a numerical procedure to estimate the

value of the integral. It follows from eqn (4) that the difference

in chemical potential in the quantum system between two

phases, Dm = mB � mA, can be obtained as:

Dm
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This expression states that the difference in chemical potential

between two phases is simply the value of the difference in the

classical system plus a correction term that accounts for the

difference in the quantum excess free energies. Thus, after

the second step one knows either the chemical potential of

the quantum system at a reference state, or similarly the

difference in chemical potential between two phases, again at

a reference state.

The third step in the determination of the phase diagram of

the quantum system requires the determination of one initial

coexistence point for each coexistence line. By using thermo-

dynamic integration,38 the free energy of each phase of the

quantum system is determined as a function of T and p. This

provides the location of at least one coexistence point between

each pair of phases by imposing the condition of identical

chemical potential, p and T between the two phases.

The fourth and final step is the tracing out of the complete

coexistence lines thus yielding the phase diagram. This is done

by using the Gibbs–Duhem simulations, starting from the initial

coexistence point determined at the end of the third step.
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2.3 Simulation details

The expression of the rotational propagator is given in

ref. 32. The propagator is composed of an infinite sum over

the energy levels of the free asymmetric top rotor. In practice

the summations are truncated; we adopted the criterion that

the propagator had converged when the absolute difference

between the value of the propagator for two consecutive

values of J (normalised so that r(0,0,0) = 1 for both values

of J) is less than 10�6 per point. A grid of one degree for

each Euler angle was used, and results for intermediate

angles were obtained by interpolation. Simulations consisted

of 360 molecules for liquid water, 432 molecules for ices Ih
and II, 324 molecules for ice III, 504 for ice V and 360 for

ice VI. The algorithm of Buch et al.40 was used to obtain a

proton disordered configuration of ices Ih, III, V and VI

simultaneously having zero dipole moment and at the same

time satisfying the Bernal–Fowler rules.41,42 For ice III we

additionally imposed the condition that the selected proton

disordered configuration presented an internal energy that

lies in the centre of the energy distribution shown in Fig. 2

of ref. 43. Direct Ih–fluid coexistence simulations used

about 1000 molecules for the classical system and about 600

for the quantum one. Free energies of the classical system

were obtained using the Einstein molecule methodology for

a given proton disordered configuration and subsequently

adding the Pauling42 entropy contribution (�RT ln(3/2)).

The methodology has been described in detail elsewhere.38

The Lennard-Jones part of the potential was truncated at

8.5 Å and long ranged corrections were added. Coulombic

interactions were treated using Ewald sums. For the solid

phase anisotropic NpT Monte Carlo simulations were per-

formed in which each of the sides of the simulation box were

allowed to fluctuate independently. The number of replicas P

in the path integral simulations was selected for each temperature

by imposing that PT be approximately 1900 � 300. This

choice guarantees that, for a rigid model of water, the thermo-

dynamic properties are within two per cent of the value

obtained as P tends to infinity. In general the simulations of

this work consisted of 200 000 Monte Carlo cycles, where a

cycle consists of a trial move per particle (the number of

particles is equal to NP where N is the number of water

molecules) plus a trial volume change in the case of NpT

simulations. To increase the accuracy, in the determination of

the excess quantum free energies, four independent runs were

performed for each value of l0. In eqn (5) Dmclassical is zero if

evaluated at the coexistence T and p of the classical system.

Direct coexistence simulations were significantly longer (up to

10 million cycles) and Gibbs–Duhem simulations were typi-

cally ten times shorter. Further details of the path integral

Monte Carlo simulations, for example, the rotational propa-

gator, the acceptance criteria within the Markov chain, the

evaluation of relative Euler angles between contiguous beads,

can be found in ref. 32 and 33.

3 Results and discussion

To illustrate the methodology used in this work to determine

the entire phase diagram of the quantum system, we shall

describe in detail the procedure used to determine the fluid–Ih
coexistence curve:

� Determine the melting temperature Tclassical
m of the classical

system at normal pressure.

� Determine the integral in eqn (5) by performing path

integral NpT simulations for various values of l0 for ice Ih and
for liquid water. For H2O the values of l0 = 1, 6/7, 5/7, 4/7,

3/7, 2/7, 1/7 were used to evaluate this integral.

� Perform thermodynamic integration and determine the

melting temperature Tm of the quantum system at which ice Ih
and water have the same m at normal p.

� Perform Gibbs–Duhem integration using path integral

simulations to determine the full Ih–water coexistence line.

Free energy calculations for TIP4PQ/2005 yielded Tclassical
m =

282 K for Ih (p = 1 bar). The same result 282 � 3K was

obtained from direct coexistence simulations. In direct

coexistence runs38,44 half of the simulation box is filled with

ice and the other half with the liquid. NpT simulations at

normal pressure are performed for several temperatures. For

temperatures above the melting point the ice within the system

melts, and for temperatures below the melting point the ice

phase is seen to grow.

We then proceeded to calculate the integral in eqn (5) at

normal p and T= 282 K (where the two phases have the same

chemical potential in the classical system). To do this the mass

of the atoms in the TIP4PQ/2005 ‘‘molecule’’ was incremen-

tally increased by a factor of l. Such a scaling only modifies

the total mass of the molecule M and the eigenvalues of the

inertia tensor (i.e. the principal moments of inertia), but leaves

the geometry of the model and the location of the centre

of mass unchanged. Seven scaling factors between l = 1 and

l = 7 were used, and the corresponding exact rotational

propagator at T = 282 K was calculated for each. Beyond

l = 7 the calculation of the propagator becomes prohibitively

expensive to calculate, and a large number of simulations

would be required to reduce the errors to an acceptable level.

Path integral simulations were then performed, and the inte-

grand of eqn (5) is determined (see Fig. 1a). The integral over

the curve formed by these results provides the difference in

excess quantum Gibbs energy between ice Ih and water, and

therefore the difference in free energies between the two phases

in the quantum system (for T = 282 K and p = 1 bar the two

phases have the same chemical potential in the classical

system). As can be seen in Fig. 1a the integrand for the

liquid–Ih calculation is reasonably smooth and forms an

almost horizontal line. For this reason it seems reasonable to

extrapolate the integrand for l0 o 1/7 from the values

obtained for larger l0.
It can be seen that the kinetic energy of ice Ih is higher than

that of water at 282 K and 1 bar, indicating that nuclear

quantum effects are significantly larger in the ice Ih phase.45

For rigid models nuclear quantum effects are related to the

strength of the intermolecular interactions which, in the case

of water, is dominated by hydrogen bonds. In ice Ih each

molecule forms four hydrogen bonds with the first nearest

neighbours, whereas in the liquid phase this number is some-

what smaller. The more ‘‘localised’’ character of the molecular

libration in ice Ih with respect to the liquid leads to the higher

kinetic energies observed. From the results shown in Fig. 1a it
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follows that m of ice Ih in the quantum system is 0.20 kT higher

than that of water at 282 K and 1 bar, indicating that the

melting point of ice Ih in the quantum system is lower than

that of the classical system. By using thermodynamic inte-

gration at constant p we found that at 258 K the chemical

potential of the solid and fluid phases become identical. This

value is the Tm of the quantum system. In order to corroborate

this result, direct coexistence runs of the quantum system

were undertaken. For the runs performed at T = 266 K and

T = 262 K the total energy increases with time and reaches

a plateau indicating the complete melting of the ice slab. At

T = 240 K we saw a slow growth of the ice phase (see Fig. 2).

At T = 252 K the energy was approximately constant along

the run. This indicates that the melting point lies between

T = 252 K and T = 262 K, thus we shall adopt the

intermediate value of 257 K (�5 K) in agreement with the

free energy result of 258 K.

The entire Ih–water coexistence line is obtained by using the

Gibbs–Duhem integration method. The Gibbs–Duhem integra-

tion method consists of a numerical integration of the Clapeyron

equation and requires simply the knowledge of the enthalpy and

volume difference between the two coexisting phases. The

enthalpy of each phase is obtained from H = K + U + pV.

Note that for each new temperature in the Gibbs–Duhem

integration a propagator matrix must be calculated as the

propagator depends on the value of PT. It can be seen that the

Ih–water curve (Fig. 3) is essentially parallel to the experi-

mental curve, shifted byE15 K due to the lower melting point

of the TIP4PQ/2005 model. The aforementioned methodology

for Ih–water was applied to the remaining phase equilibria,

leading to the complete phase diagram. A plot of the integrand

of eqn (5) with respect to l0 is shown in Fig. 1a. The integral of

these functions leads to the difference in excess quantum free

energy between the two considered phases in units of NkT. As

can be seen the integrand is rather smooth, and in most of the

cases it can be well described by a straight line. It is worth

noting that if this was always the case then one could obtain a

reasonable estimate of the integral simply by obtaining the

value of DK/(l0NkT) at l0 = 1/2. In Fig. 3 the phase diagram

of water as obtained from quantum simulations of the

TIP4PQ/2005 model of water is presented and compared to

the experimental phase diagram. One can see that the diagram

is qualitatively correct, each phase is situated in the correct

relation to the other phases. Furthermore, the gradients of the

coexistence curves are also acceptable in comparison to

experimental results. The most notable discrepancy is an

overall shift of 15–20 K in the diagram to lower temperatures.

In Fig. 4 the changes in volume along phase transitions

obtained from the simulations are presented. It can be seen

that they compare favourably with the experimental results

obtained by Bridgman in 19121 (Fig. 4). Making use of a

Fig. 1 (a) Integrand of eqn (5) (i.e. (KB � KA)/(l0NkT)) as a function

of l0 for transitions A–B. Key: red line withE is liquid–Ih at 282 K and

p = 1 bar, magenta line with & is II–V at 200 K and p = 4112 bar,

blue line with’ is II–VI at 200 K and p= 1 bar, magenta line with m

is V–VI at 200 K and p= 9505 bar, blue line withJ is Ih–III at 200 K

and p=3306 bar, and the red line withK is Ih–II at 200 K and p=1 bar.

Error bars (only shown for liquid–Ih) represent the standard error.

(b) Integrand of eqn (4) for several ices at 200 K. Results were

obtained using path integral simulations of the TIP4PQ/2005 model.

The lines correspond to a fit of the simulation results to a second order

polynomial. Results (from top to bottom) correspond to ice Ih at

3306 bar, ice III at 3306 bar, ice V at 4112 bar, ice II at 4112 bar, ice II

at 1 bar and ice VI at 1 bar. The integral of the curves (from 0 to 1)

yields Gex,Q/(NkT) which results in (from top to bottom) 3.11, 2.91,

2.80, 2.68, 2.60 and 2.59.

Fig. 2 Plot of the total potential energy (U) per particle from the

liquid–Ih direct coexistence simulations of the quantum system at

p = 1 bar.

Fig. 3 Phase diagram of water from path integral simulations of the

TIP4PQ/2005 model. Experimental results (blue points) are also

shown.1,56
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recent publication by Loerting et al.46 where the densities of

ices Ih, II, III and V in the range of 77–87 K at normal pressure

were determined using a methodology known as cryoflotation,

we decided to study the densities at the intermediate temperature

of 82 K. Additionally we also considered a couple of states for

the liquid, and one for ice VI at room temperature. The results

are summarised in Table 1. In general the simulation and

experimental results coincide within 1%. Classical simulations

of TIP4P/2005 tend to overestimate the experimental densities

(at 82 K) by more than 3%.12 Thus a quantum treatment is

absolutely essential if one wishes to describe experimental

results at low temperatures. The results of this table can also

be used to estimate the value of the transition pressures at zero

Kelvin as shown by Whalley.5,47 The estimates obtained in this

way were consistent with those obtained from extrapolations

to zero Kelvin of the coexistence lines. The maximum devia-

tion found between the two methodologies was E700 bar,

which is reasonable taking into account the combined uncer-

tainty of all the calculations.

In order to highlight the differences between quantum and

classical results for the phase diagram, the quantum and

classical phase diagrams of the TIP4PQ/2005 model are super-

imposed in Fig. 5. Although the diagrams are qualitatively

similar there are certain features of interest that can be

observed. In the classical phase diagram the melting lines are

shifted to higher temperatures, and solid–solid transitions are

shifted to higher pressures (for a given temperature) with

respect to the quantum phase diagram. Another important

difference between the classical and quantum phase diagrams

is that the region of the phase diagram occupied by ice II is

significantly reduced in the classical treatment. In fact in the

classical system the ice II–III transition is shifted to much

lower temperatures and ice II is stable only for temperatures

below 80 K. This shrinking of the ice II phase is consistent

with recent findings by Habershon and Manolopoulos48 who

found that in classical simulations of the q-TIP4P/F model49

ice III occupies the region of stability of ice II. This indicates

that nuclear quantum effects play a significant role in deter-

mining the region of stability of ice II in the phase diagram

of water.

It would be useful to have a rational guide to understand the

changes in the phase diagram observed when including nuclear

quantum effects. For this purpose the integrand of eqn (4),

which facilitates the determination of the quantum excess free

energy, is shown in Fig. 1b at a temperature of 200 K. The

average kinetic energy of a harmonic oscillator of mass

M = M0/l0 and frequency n ¼
ffiffiffiffi
l0
p

n0 is given by:50

hKi ¼ hn0
4

ffiffiffiffi
l0

p
coth

hn0
2kBT

ffiffiffiffi
l0

p� �
: ð6Þ

Upon performing a Taylor series expansion about l0 = 0 one

obtains:

hKi � 1
2
kBT

l0
¼ 1

24

ðhn0Þ2

kBT
� 1

1440

ðhn0Þ4

ðkBTÞ3
l0 þ Oðl0Þ2 ð7Þ

For the rigid water model used in this work, one can describe

the solid phases by a set of 6N oscillators (i.e. phonons). By

assuming a unique frequency, as in an Einstein like model, one

arrives at:

hKi=NkBT � 3

l0
¼ 1

4

hn0
kBT

� �2

� 1

240

hn0
kBT

� �4

l0 þ Oðl0Þ2 ð8Þ

Thus for the Einstein model the integrand of eqn (4) is

well behaved and has both a finite value and a finite negative

Fig. 4 Molar volume change (Dv = vB � vA) along the phase

boundaries from (Left) path integral simulations and (Right) experi-

mental results (w indicates the liquid phase).1

Table 1 Densities of ices and liquid water (in g cm�3) under different
thermodynamic conditions. All results were obtained for p = 1 bar,
except the two labelled with an asterisk for which p = 15400 bar.
Experimental densities for ice III correspond to the experimental
values for ice IX the proton ordered form of ice III. Experimental
results are from ref. 46, 58–60. The average values ofU and K obtained
from simulations (kcal mol�1) are also shown

Phase T(K) r(sim.) r(exp.) U K

Ih 82 0.927 0.932 �14.302 1.914
II 82 1.189 1.211 �14.136 1.774
II 123 1.185 1.190 �14.046 1.837
III 82 1.148 1.16946, 1.16057 �14.040 1.863
V 82 1.252 1.249 �13.883 1.808
VI 82 1.335 1.335 �13.745 1.790
VI(*) 300 1.383 1.391 �13.055 2.475
Liquid(*) 300 1.312 1.311 �11.997 2.395
Liquid 300 0.997 0.996 �11.897 2.366

Fig. 5 Classical phase diagram of the TIP4PQ/2005 model (dashed

blue lines) compared to the diagram obtained from path integral

simulations (solid red lines).
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slope at l0 = 0. The results presented in Fig. 1b are indeed

consistent with this predicted behaviour. From Fig. 1b it is

possible to estimate n0 from either the slope or the intercept,

obtaining ‘‘Einstein’’ like frequencies between 550 cm�1 and

450 cm�1 depending on the phase. These are typical values for

intermolecular librations in water, which are located between

50 cm�1 and 800 cm�1. A recent study has shown that one can

reproduce the heat capacity of ice Ih using a selection of six

fundamental frequencies selected from this range.51 It is worth

mentioning that the TIP4PQ/2005 model also does a good job

of calculating Cp when used in path integral simulations.13 The

excess quantum free energies are obtained from the integration

of the results of Fig. 1b. It is evident that at 200 K nuclear

quantum effects significantly influence the free energies of the

solid phases of water. By comparing the results of ice II at

both 1 and 4112 bar it is seen that the pressure increases the

magnitude of nuclear quantum effects at a given temperature

although the increase is small (0.08 in NkT units for the

considered pressures). The relative ordering in which the

excess free energy increases is II CVI, V, III and finally Ih.

The tetrahedral order parameter, qt,
52,53 was designed to

measure the degree of tetrahedral ordering in liquid water: qt is

defined as:

qt ¼ 1� 3

8

X3
j¼1

X4
k¼jþ1

cosðyj;i;kÞ þ
1

3

� �2
* +

ð9Þ

where the sum is over the four nearest (oxygen) neighbours of

the oxygen of the i-th water molecule. The angle yj,i,k is the

angle formed by the oxygens of molecules j, i and k, oxygen i

forming the vertex of the angle. The tetrahedral order para-

meter has a value of 1 for a perfect tetrahedral network, and

0 for an ‘‘ideal gas’’ of oxygen centres. We shall make use of this

descriptor in order to try to rationalise our results. The value

of qt of each solid at T= 200 K was obtained by annealing the

solid structure while keeping the equilibrium unit cell of the

system. In Fig. 6, the excess free energy is plotted as a function

of qt for the proton disordered ices, namely Ih, III, V and VI

at a pressure of around 3600 bar and a strong correlation

is evident. Ice II has a large value, qt = 0.83, however,

the impact of nuclear quantum effects on this ice phase is

smaller than in the rest of the ice phases. Since ice II is the only

proton ordered solid considered in this work, it is clear that in

this case the fixed relative orientations between molecules are

playing an important role in determining the magnitude of the

nuclear quantum effects. It would be useful to evaluate the

impact of nuclear quantum effects on the fluid phase. At 200 K

the fluid is highly supercooled thus it is difficult to evaluate its

Gex,Q. The difference between the total kinetic energy of a

phase and that of the corresponding classical system under the

same conditions also provides an estimate of the magnitude of

nuclear quantum effects. One can see in Table 1 that at 300 K

and 15 400 bar the kinetic energy of liquid water is only

slightly lower than that of ice VI. This indicates that the

magnitude of nuclear quantum effects in the liquid is smaller

than that of the ice with smallest nuclear quantum effects,

ice VI. This is consistent with the low value, qt = 0.58, of the

tetrahedral order parameter found for the fluid phase at 300 K

and 15 400 bar.54 It appears that the importance of nuclear

quantum effects increases as the strength of the intermolecular

hydrogen bonding increases. The strength of the hydrogen

bonding seems to correlate (with the exception of ice II) with

the value of the tetrahedral order parameter. For example, in

ice Ih the first four nearest neighbours of a given molecule are

located in a perfect tetrahedral arrangement which is the

optimum situation to have a strong hydrogen bond. For the

rest of the ices (and for water) the four nearest neighbours of a

molecule form a distorted tetrahedron and therefore the

strength of the hydrogen bond should decrease. The greater

the strength of the hydrogen bond the higher the frequency

associated with the librational mode, and therefore the higher

the impact of nuclear quantum effects.

The change in the coexistence pressure for a certain

temperature due to the inclusion of nuclear quantum effects

can be approximated reasonably well by the expression

p� pclassical ’
G

ex;Q
B � G

ex;Q
A

VB � VA
ð10Þ

where the properties on the right hand side are evaluated at

pclassical. It follows from eqn (10) that the impact of nuclear

quantum effects on a given phase transition depends on the

difference in the excess quantum free energy between the two

phases, and on the volume change. The excess free energy

difference between phases decreases in the following order:

liquid–Ih, II–Ih, liquid–III, II–III, liquid–V, III–Ih, III–V,

liquid–VI and finally II–VI. The impact of nuclear quantum

effects on a certain phase transition will be small when the

volume change of the phase transition is large, and large when

the volume change is small. Volume changes along the phase

transitions of water are presented in Fig. 4. Taking these two

factors into account it is clear that the II–III phase transition is

most affected by nuclear quantum effects (i.e. the excess free

energy difference is large and the volume change is small),

followed by the melting curves of ices (decreasing in the order

liquid–Ih, liquid–III, liquid–V). This is followed by the transi-

tions Ih–II, III–V and Ih–III. Finally the liquid–VI and the

II–VI coexistence lines are those least affected by nuclear

quantum effects.

Fig. 6 Correlation between the excess quantum free energy and the

tetrahedral order parameter for ices at 200 K and p E 3600 bar. For

ice VI the excess quantum free energy at 1 bar was increased by

0.08NkT to estimate its value at 3600 bar.
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4 Conclusion

This work illustrates that the calculation of the phase diagram

of water, including nuclear quantum effects, is now feasible,

although admittedly it is computationally expensive (even for

the simple model considered in this work 8 CPUs were required

for about 2 years to obtain the phase diagram presented). The

impact of nuclear quantum effects on phase transitions is

significant and can be rationalised in terms of the degree of

tetrahedral ordering of the different phases and of the magnitude

of the volume change involved in each phase transition. The

TIP4PQ/2005 model yields a reasonable prediction of the

experimental phase diagram of water. The simulation results

are consistent with the Third Law of thermodynamics and

predict rather well the densities of the different phases over a

wide range of temperatures and pressures. With some delay with

respect to the original contributors, this work shows that a

simple modification of the water model proposed by Bernal and

Fowler41 in 1933 can reproduce reasonably well the experi-

mental phase diagram of water determined by Bridgmann1 in

1912, providing results at low temperatures consistent with the

Third Law first stated by Nernst in 1906.

In concluding this work it is worth commenting on the use

of a rigid non-polarisable model to represent water. Naturally

in reality water is both flexible and polarisable55 so it goes

without saying that this work is far from the last word on the

matter, and the results presented here form only a way-point

on the long road to obtaining a definitive model of water that

describes all of the facets of this intriguing molecule. That said,

path integral simulations of the TIP4PQ/2005 model have

provided us with the best phase diagram of water calculated

to-date.
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26 E. G. Noya, C. Vega, L. M. Sesé and R. Ramirez, J. Chem. Phys.,

2009, 131, 124518.
27 A. Wallqvist and B. J. Berne, Chem. Phys. Lett., 1985, 117, 214.
28 R. A. Kuharski and P. J. Rossky, Chem. Phys. Lett., 1984, 103, 357.
29 E. Curotto, D. L. Freeman and J. D. Doll, J. Chem. Phys., 2008,

128, 204107.
30 E. Asare, A.-R. Musah, E. Curotto, D. L. Freeman and J. D. Doll,

J. Chem. Phys., 2009, 131, 184508.
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