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In this paper the effect of molecular flexibility on the phase diagram is studied. Three groups of models are used;

a pearl-necklace model, a linear tangent hard sphere model and a hybrid model consisting of a rigid section and
a flexible section. Each of these models are built up from hard sphere interaction sites. Calculations of the virial
coefficients show significant differences between each of the models. In spite of this the equation of state is

hardly affected by flexibility in the medium density range. However, at higher densities flexible and linear rigid
chains display significant differences; the former having only fluid and solid phases whereas the the rigid model
also forms mesophases (nematic and smectic A). The introduction of flexibility into a rigid model has the effect

of moving the onset of liquid crystal formation to higher densities. Flexibility is also seen to stabilize the smectic
phase at the expense of the nematic phase. Critical properties have been obtained from Wertheim’s
thermodynamic perturbation theory (TPT1) in the limit of infinitely long chains. Zero number density of chains,
zero mass density and pressure and finite non-zero values of the critical temperature and compressibility factor

are predicted at the critical point. For very long chains the critical temperature (i.e. theY temperature) is seen to
be the Boyle temperature. FromWertheim’s theory it is possible to analytically determine the temperatureY for
square well chains.

I. Introduction

Molecular fluids may be classified in a number of ways.1 One
such classification is by molecular shape; simple fluids (usually
spherical particles) are often used to represent the noble gases,
or linear and angular fluids which can be used to represent
diatomic molecules and triatomic molecules (i.e. CO2).
Another possibility is to consider the presence or absence of
multipolar moments, for example classifications such as non-
polar, quadrupolar, dipolar, ionic etc. Molecular fluids can
also be classified depending on whether flexibility is present or
absent in the model. It is important to clarify the meaning of
molecular flexibility in this context: clearly no real molecule is
completely rigid. All molecules suffer constant structural
changes in the way of fluctuations. However, in very few cases
do these fluctuations assume magnitudes greater than 1% of its
equilibrium value. In view of this to a first approximation it is
reasonable to assume that these molecules are ‘ rigid ’. For rigid
molecules it is possible to obtain good estimates of config-
urational properties by fixing the molecular geometry to the
molecular equilibrium values. However, for organic molecules,
for example butane,2 their thermal energy at room temperature
is sufficient to overcome internal energy barriers, leading to
conformational changes. Molecules that have ready access to a
number of conformations are clearly flexible. In the calculation
of configurational properties the existence of flexibility should
be considered from the very outset. Hybrid molecules fall
between the cases of rigid molecules at one extreme, and
flexible molecules, such as polymers and alkanes, at the other.
A hybrid molecule would be one for which certain sections are
rigid, and other sections have a high degree of flexibility. A
large number of mesogenic molecules (those forming liquid
crystal phases) belong to this class. A common example of

such a mesogenic molecule is 4-pentyl-40-cyanobiphenyl,3,4

having a rigid section composed of a pair of benzene rings, and
a flexible alkyl tail.
The focus of this paper is on the phase diagrams and

equation of state (EOS) for completely flexible molecules,
hybrid molecules, and completely rigid molecules. The primary
motivation for this work is the identification of the role of
molecular flexibility on the phase diagram. In order to isolate
the effect of flexibility on the phase diagram molecular features
that could make the comparison of rigid and the flexible
models ambiguous have not been incorporated, for example
electrostatic charges are not included in this study. The
molecular models used in this study are built up from m hard
sphere monomers.5 Three models have been used in this study.
The first model is the so called ‘pearl-necklace ’ model.6–8 This
model consists of hard sphere monomers which are tangen-
tially bounded and are free to adopt any non-overlapping
configuration (see Fig. 1). The pearl-necklace model represents
a completely flexible molecule. On the other hand a completely
rigid molecule has been studied using the linear tangent hard
sphere model (LTHS) also shown in Fig. 1. Advantages of
using a hard sphere potential are that the EOS and phase
diagram no longer depend on temperature but rather on the

Fig. 1 The pearl-necklace model (left) and the LTHS model (right)
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density of the system. Another advantage is that the absence of
attractive forces removes the vapor–liquid equilibria region
from the phase diagram, thus making any analysis easier. As
well as the pearl-necklace model and the LTHS model a hybrid
model has been studied.9 The hybrid, or rigid fully flexible
fused hard sphere (RFFFHS) model, consists of a rigid section
formed from mr hard spheres and a flexible part having mf hard
spheres (see Fig. 2). In the hybrid model the monomer units
are no longer tangential, but rather overlapping, with a
reduced bond length of 0.6. The overlap of the monomer units
makes the model more ‘ convex ’ than the tangent hard sphere
case, which is an advantage in the study of high density fluids,
such as liquid crystals. This reduced bond length also allows
flexibility to be introduced more gradually than in the tangent
case.
In order to study the vapor–liquid equilibria attractive for-

ces must be present. In view of this we present results for
flexible chains composed of Lennard-Jones monomers, with
special emphasis given to the critical properties of very long
chains.
It is important that simulation results should be viewed

alongside theoretical results. In the early nineteen eighties
Wertheim proposed a theory for associating fluids.10–14 When
the association between sites becomes infinitely strong, chain-
like fluids are formed. Starting with the EOS and structural
properties of the reference system formed by non-associating
monomers, the EOS and free energy of the chain fluid formed
by tangent monomers can be obtained by using a perturbative
approach. Wertheim’s theory, when truncated at the first
order, is known as the first order perturbation theory
(TPT1).15 One of the most striking conclusions of TPT1 is the
prediction that the EOS does not depend on chemical details
such as bond angles or the presence or absence of flexibility.
This surprising result has been tested for short chains and it
has indeed been found that flexibility has very little effect on
the isotropic EOS.16 However one may suspect that this find-
ing can not hold true for long chains; fully flexible chains do
not form liquid crystal phases whereas fully rigid chains do
indeed form mesophases. In this work we shall make a detailed
comparison of the behavior of rigid and flexible hard chains,
from the very low density region up to the high density and
solid phase, and analyse the differences between rigid and
flexible chains.
The scheme of the paper is as follows. In Section II we

outline Wertheim’s first order perturbation theory (TPT1). In
Section III a detailed comparison between the LTHS model
and the pearl-necklace model will be provided for the low
density region III.A, in the medium density region III.B and in
the high density region III.C. In Section IV we present results
for a model containing rigid and flexible units. In Section V we
shall briefly describe some results concerning the vapor–liquid
equilibrium of flexible chains. Finally in Section VI the con-
clusions are presented.

II. Brief description of Wertheim’s perturbation
theory

We shall summarize the main ideas contained within Wer-
theim’s theory by following the thermodynamic cycle intro-
duced by Zhou and Stell.17 We have a reference fluid

containing a number of spherical particles or monomers Nref

within a volume V at a temperature T. These particles interact
through a spherical pair potential u(r). The properties of this
reference fluid will be labeled by the superscript ref. In a sec-
ond container of volume V and temperature T, there are
N¼Nref=m fully flexible chains of m monomers each. By fully
flexible chains we mean chains of m monomers, with a fixed
bond length of L¼ s, and no other constraints ( i.e. there are no
bond angle potentials or torsional terms). Each and every
monomer interacts with all other monomers in the system,
regardless as to whether they are in the same molecule or not.
Residual properties of the reference fluid are described by the
properties of the reference fluid minus those of an ideal gas at
the same number density and temperature. Residual properties
of the chain fluid are defined as those of the chain fluid minus
those of an ideal gas of chains at the same number density (of
chains) and temperature. Notice that in the ideal gas of chains
there are no intermolecular interactions but intramolecular
interactions are still present.
The thermodynamic cycle of Zhou and Stell is presented in

Fig. 3. In the upper left section is an ideal gas of monomers. In
the upper right section is an ideal gas of chains. In the lower
left section is the reference fluid with monomers interacting via
the pair potential u(r) and in the lower right section the chain
fluid where inter- and intra-molecular interactions are also
described by u(r). Because we have a thermodynamic cycle it
holds that

DAstep4 ¼ DAstep1 þ DAstep2 þ DAstep3 ð1Þ

The meaning of DAstep1 and DAstep3 is clear since they are
related to the residual properties of the reference fluid and of
the chain fluid:

DAstep1 ¼ �Aref
residual ð2Þ

DAstep3 ¼ Aresidual: ð3Þ

The change in free energy for step 2 is given by:

DAstep2 ¼ �NkT lnðexpð�bUintra;chainÞÞ ð4Þ

The change of free energy in step 4 is unknown. Two
approximations shall now be made. We shall assume that the
work done in formingN chains is identical toN times the work
done to form the first chain in the monomer reference fluid,
thus:

DAstep4 � �NkT lnðgrefðr1; r2; . . . ; rmÞÞ ð5Þ

where gref (r1 , r2 ,...,rm) is the m-body correlation function of

Fig. 2 The hybrid (RFFFHS) model for mr¼ 10 and mf¼ 5

Fig. 3 Thermodynamic cycle representing Wertheim’s theory.
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the reference fluid. Introducing this approximation into eqn.
(1) one obtains:

Aresidual ¼ Aref
residual � NkT lnðyrefðr1; r2; . . . ; rmÞÞ ð6Þ

where yref (r1 , r2 ,...,rm) is the background correlation function
of the reference fluid. This function is in general unknown. A
second approximation is needed. The m-body background
correlation function of the reference fluid will be approximated
by:

yðr1; r2; . . . ; rmÞ ¼ yrefðr12Þyrefðr23Þ � � � yrefðrm�1;mÞ ð7Þ

Therefore the residual free energy of the chain fluid is given by:

Aresidual ¼ Aref
residual � Nðm � 1ÞkT lnðyrefðsÞÞ ð8Þ

and the total free energy of the chain is given by:

A

NkT
¼ lnðrs3Þ � 1þ Aref

residual

NkT
� ðm � 1Þ lnðyrefðsÞÞ ð9Þ

where r is the number density of chains, given by

r ¼ N

V
ð10Þ

and the EOS of the chain fluid is given by:

Z ¼ p

rkT
¼ mZref � ðm � 1Þ 1þ rref

@ lnðyrefðsÞÞ
@rref

� �
ð11Þ

where rref is the number density of monomers, Z is the com-
pressibility factor of chains, and Zref is the compressibility fac-
tor of the reference fluid. Eqns. (9) and (11) constitute the basic
equations of Wertheim’s TPT1 theory. So far we have placed
no restraint on the nature of the pair potential u(r). The pre-
vious two equations can be applied equally well to chains
formed by hard spheres of diameter s, or to Lennard-Jones
(LJ) chains with distance between contiguous monomers equal
to s. In both cases the background correlation at contact
yref(s), is identical to the pair correlation function at contact
gref(s) (i.e. u(s)¼ 0). According to TPT1, in order to obtain
the thermodynamic properties of the chain fluid, one must first
know the thermodynamic properties of the reference fluid, and
their structural properties as given by gref(s). Wertheim’s TPT1
has already been implemented for hard sphere chains, for LJ
chains in the fluid phase,18,19 and for chains consisting of
non-spherical segments.20 However, notice that the previous
equations can also be applied to the solid phase; all that is re-
quired is a knowledge of the thermodynamic and structural
properties of the reference fluid for the solid. As will be shown
later eqns. (9) and (11) constitute a good description of the
thermodynamic properties of chains in the solid phase. In sum-
mary:
(i) Wertheim theory provides the EOS and free energy of

chains, as long as the free energy and the structure of the
reference system of monomers is known.
(ii) The reference monomers can be in the fluid or in the

solid phase, with either a hard sphere or a LJ pair potential.
(iii) No distinction is made in Wertheim’s theory between

rigid and flexible chains.
Notice that in both of the models the bonds are distributed

isotropically in the fluid and in the solid phase (as will be
discussed later fully flexible chains form solid phases with a
random distribution of bond vectors). However, one may
suspect that Wertheim’s theory (at least its first order imple-
mentation) can not be successful in describing phases where
the bonds between monomers are oriented, as it is the case of
the LTHS model in the nematic, smectic, or solid phase.
The implementation of Wertheim’s TPT1 for the system of

fully flexible tangent hard spheres in the fluid phase (when used
in conjunction with the Carnahan–Starling EOS21 for the
monomer fluid) is particularly simple and yields:

Z ¼ p

rkT
¼ m

1þ y þ y2 � y3

ð1� yÞ3
� ðm � 1Þ 1þ y � y2=2

ð1� yÞð1� y=2Þ
ð12Þ

where Vm is the molecular volume given as Vm ¼ pm
6 s3, and y is

the volume fraction given by y¼ rVm . Alternative equations of
state that satisfactorily describe the EOS of the pearl-necklace
model are the generalized Flory-dimer theory,6 the perturbed
hard sphere chain22 and the integral approach of Chiew.23

III. Results

A The very low density region

At sufficiently low densities the EOS of a fluid can be described
by the virial expansion. The pressure of a homogeneous iso-
tropic fluid can be given in terms of a power series of the
density by the following expression:

Z ¼ p

rkT
¼ 1þ B2ðTÞrþ B3ðTÞr2 þ B4ðTÞr3 þ . . . ð13Þ

where B2 , B3 and B4 are the second, third and fourth virial
coefficients, respectively. For a hard body system the virial
coefficients do not depend on T hence eqn. (13) can be written
as

Z ¼ 1þ B	
2y þ B	

3y
2 þ B	

4y
3 þ . . . ð14Þ

where Bn* are the reduced virial coefficients, defined as:

B	
n ¼ Bn

Vn�1
m

: ð15Þ

Although the virial coefficients of rigid molecules can be
evaluated by the procedure proposed by Ree and Hoover24

(extended to non-spherical molecules by Rigby25,26) the eva-
luation of the virial coefficients for flexible molecules is non-
trivial. We have recently proposed a methodology to evaluate
the virial coefficients of multicomponent mixtures. An exten-
sion of this methodology allows one to compute the virial
coefficients of flexible molecules. Basically the different con-
figurations which may be adopted by the chain are treated as
different components of a mixture. Details of the procedure
may be found in ref. 27 Let us first consider the case of
short chains (i.e. m< 8). In Tables 1 and 2 the virial coeffi-
cients of rigid and flexible chains with m¼ 4, 5, 6, 7, 8 are
presented. Results for the LTHS were taken from Vega et al.28

whereas the results for the pearl-necklace model were obtained
in this work. As can be seen, clear differences are visible
between the virial coefficients of rigid and flexible chains.

Table 1 Calculated virial coefficients for the fully rigid model

m B2* B3* B4*

4 8.248 32.36 57.94
5 9.641 40.67 60.94
6 11.033 49.49 56.47
7 12.423 58.48 42.55

Table 2 Calculated virial coefficients for the pearl-necklace model

m B2* B3* B4*

5 8.483 38.25 94.03
6 9.379 45.72 115.88
7 10.117 52.76 138.69

Phys. Chem. Chem. Phys., 2002, 4, 853–862 855



The case of very long chains (with m up to 200) has also been
considered.29 In Fig. 4 and Fig. 5, the values of B2 and B3 for
the LTHS and for the pearl-necklace model are presented
along with the predictions of TPT1 for this system. We notice
that differences in B2 are significant whereas differences in B3
are much smaller. Wertheim’s hypothesis of identical EOS for
flexible and rigid chains seems to be supported by our results
for B3 but not by our results for B2 . An interesting issue is the
scaling law followed by the virial coefficients. For the second
virial coefficient the scaling laws are well known. For flexible
chains it holds that30

B2 / m3n / m1:8 ð16Þ

where n is the exponent of the radius of gyration under good
solvent conditions (n� 0.6). For rigid linear chains:31,32

B2 / m2 ð17Þ

However, the scaling of higher virial coefficients is not so clear.
For hard flexible chains De Gennes proposed33 (in good sol-
vent conditions) that Bi / m(3n)(i � 1). One consequence of this
is that for flexible chains:

lim
m!1

Bn

Bn�1
2

¼ lim
m!1

B	
n

B	
2

� �n�1 ¼ gn: ð18Þ

For rigid linear chains, Onsager proposed34 that:

lim
m!1

Bn

Bn�1
2

¼ lim
m!1

B	
n

B	
2

� �n�1 ¼ 0: ð19Þ

In order to test whether our numerical results are compatible
with these scaling laws, results are presented in Fig. 6 and
Fig. 7 for B3 and B4 . Our results are fully consistent with On-
sager’s scaling for linear rigid chains (this could be expected
since hard spherocylinders present Onsager scaling and our
LTHS model should follow an identical scaling35–37), and de
Gennes’ scaling for flexible chains. The g3 factor of de Gennes
scaling obtained from our results is close to 0.35 for B3 . For B4
it is more difficult to make an assessment on the value of g4 ; it
seems that our results are not in the asymptotic regime.
In summary the virial coefficients of flexible and rigid chains

differ significantly in both magnitude and scaling behavior for
large values of m. Therefore both rigid and flexible chains show
important differences in the very low density regime. One may

Fig. 4 Reduced second virial coefficient B2* for hard models made up
of m tangent hard spheres. Numerical results of this work for the pearl-
necklace model (open circles); numerical results for the pearl-necklace
model from Yethiraj et al.30 (plus sign); Wertheim TPT1 predictions
(solid line); numerical results of this work for the LTHS model (open
squares); exact predictions31,32 for the LTHS (dashed line).

Fig. 5 Reduced third virial coefficient B3* of models formed by m
tangent hard spheres. Numerical results of this work for the pearl-
necklace model (open circles); Wertheim’s TPT1 predictions (solid
line); numerical results of this work for the LTHS model (open
squares).

Fig. 6 B3=B
2
2 plotted as a function of 1=

ffiffiffiffi
m

p
for several hard models.

Results for the pearl-necklace model obtained in this work *, results
for LTHS obtained in this work &, and results for hard spher-
ocylinders from ref. 35 u.

Fig. 7 B4=B
3
2 plotted as a function of 1=

ffiffiffiffi
m

p
. Symbols as in Fig. 6.
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suspect that the osmotic second virial coefficients of polymers
under good solvent conditions are sensitive to the presence or
absence of flexibility.

B The medium density region

When the virial expansion starts to break down we enter into
the medium density regime. In Fig. 8 the EOS for m¼ 3, 5 and
7 for the LTHS and for the pearl-necklace model as obtained
from simulation are presented as well as the predictions from
Wertheim’s TPT1. As can be seen, the EOS for rigid and
flexible chains are similar in the medium density region. At
medium densities the compressibility factors of LTHS are
always lower than those of flexible chains. Wertheim’s TPT1
describes quite well both sets of data, but seems to be better at
reproducing the simulation results for the flexible model.
Another interesting feature is the existence of a crossing in the
EOS (compressibility factor versus volume fraction) of rigid
and flexible chains which have the same value of m. In fact at
very low densities the LTHS model presents a higher value of
the compressibility factor for a certain value of m than the
flexible chain model. This is a consequence of the scaling m2 for
B2 of LTHS versus the m3n scaling of B2 for flexible chains.
However at medium densities LTHS has lower values of Z for
a certain value of y than flexible chains. Therefore the EOS of
rigid and flexible chains with the same value of m do indeed
cross. One may suspect that this is due to the much lower value
of B4 of rigid chains than that of flexible chains. At medium
densities where the contribution of B4 is important the EOS of
the LTHS is lower than that for flexible chains. It is somewhat
surprising that Wertheim’s TPT1 correctly predicts the EOS
for these models, especially when taking into account that it
fails completely in describing the virial coefficients, as was
shown in Section III.A.

C The high density region

We shall now focus on the high density region. The phase
diagram of the pearl-necklace model has been determined
recently by Malanoski and Monson38 from computer simula-
tion results. The only phases found for the pearl-necklace
model are the isotropic fluid phase and the solid phase. The
solid phase of the pearl-necklace model is particularly inter-
esting since it consists of a fcc close packed structure of atoms
with a random distribution of bond vectors.38,39 In Fig. 9 a two
dimensional sketch of a high density phase of the pearl-neck-
lace model is shown. In the previous section we have shown

that TPT1 successfully describes the simulation results of the
pearl-necklace model in the fluid phase. Can TPT1 be extended
to describe the solid phase? In Fig. 10 the EOS as obtained
from Wertheim’s TPT1 for the solid phase is presented along
with the simulation results of Malanoski and Monson. As can
be seen the agreement between theory and simulation is quite
good. The extension of Wertheim’s theory to the solid phase is
straightforward (details may be found in ref.40) requiring only
the EOS and free energy of the hard sphere solid. The fact that
Wertheim’s theory can be used to describe the solid phase of
the pearl-necklace model seems to have been overlooked pre-
viously. Not only is the EOS of the solid phase good, but also
the free energies as well. In Fig. 11 the fluid–solid equilibrium
of the pearl-necklace model as obtained from simulation and
from Wertheim’s TPT1 theory (for the fluid and solid phase) is
presented. As can be seen the agreement between theory and
simulation is again quite good. The theory is able to predict an
asymptotic limit for the volume fractions of chains at freezing
for large values of m. In fact the extension of Wertheim’s
theory to the solid phase has shown that asymptotic values of
freezing properties are obtained whenever the EOS and free
energies of the chains in the fluid and in the solid phases are
linear functions of m. Let us now examine the LTHS model.
The solid structure is based again on a close packed fcc
structure of hard spheres with stacking sequence ABCABC
(see Fig. 12). The molecules are constructed by linking m

monomers in a linear configuration. The same orientation is
assigned to each of the molecules in each of the layers. The
final solid structure corresponds to the CP1 structure in the

Fig. 8 From top to bottom results for m¼ 7, 5 and 3. Circles: si-
mulation results for flexible chains. Squares: Simulation results for
rigid chains. Lines: TPT1.

Fig. 9 Schematic diagram of the flexible trimer in the solid phase.

Fig. 10 Equation of state for the pearl-necklace model in the solid
phase. Symbols: Simulation results. Solid line: Wertheim’s theory.
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paper by Vega et al.41 for the solid phases of hard dumbbells.
The solid structure for the LTHS model with m¼ 5 is shown in
Fig. 12. Notice that the molecular axis is tilted with respect to
the layer normal (i.e. to the A plane of the fcc hard sphere
solid). We have performed NpTMonte Carlo simulation (MC)
runs. Non-isotropic Monte Carlo was used to allow for
changes of shape in the simulation box.42 Expansion runs
started from a high density solid, and compression runs started
from a low density gas (for details see ref. 43). For m¼ 4 no
liquid crystal phase was obtained. For m¼ 5 a smectic A
structure was obtained in the expansion runs. For m¼ 6,
nematic and smectic A phases were found for both compres-
sion and expansion runs. The EOS as obtained from the
simulation runs is presented in Fig. 13 for m¼ 5 and in Fig. 14
for m¼ 6, along with predictions from the Vega–Lago theory44

for the isotropic–nematic transition (lines). In addition to
isotropic fluid and solid phases, mesophases are obtained for
the LTHS model.43,45 For m¼ 6, nematic and smectic A phases
were obtained. The behavior of the LTHS differs significantly
from the pearl-necklace model. In Fig. 15 the EOS for the
LTHS and for the pearl-necklace model with m¼ 6 is given. As
can be seen, rigid and flexible molecules display quite similar
behavior up to volume fractions of y¼ 0.32. For higher den-
sities the EOS is completely different. This is mainly due to the
fact that the LTHS model can form liquid crystal phases
whereas the pearl-necklace model can not. Even in the solid
phase the EOS of the two models is quite different. This is
interesting since the close packing density for the two models is

Fig. 12 Solid structure of the LTHS with m ¼ 5.

Fig. 13 Plot of the EOS for the 5 LTHS model. � represents iso-
tropic state points, * represents nematic state points, & represents
smectic state points andu represents solid state points. The solid curve
is the TPT1 EOS. p*¼ p=(kT)s3.

Fig. 14 Plot of the EOS for the 6 LTHS model. � represents iso-
tropic state points, * represents nematic state points, & represents
smectic state points and u represents solid state points. The dot-da-
shed curve is the Vega–Lago theory for the isotropic phase, the dashed
line represents the tie line and the solid curve for the nematic phase.
p*¼ p=(kT)s3.

Fig. 15 EOS for the m¼ 6 model. Solid line: Flexible model, and the
symbols represent the fully rigid model; * isotropic, � nematic, &
smectic, u solid.

Fig. 11 Solid–fluid equilibrium of the pearl-necklace model. Sym-
bols: Simulation results.38 Solid line: Wertheim’s theory.
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the same, namely that of the hard sphere system y ¼
ffiffiffi
2

p
p=6:.

The message of Fig. 15 is that rigid and flexible chains present
quite different behavior. Let us briefly describe how Fig. 15
would be for large values of m (and not just for m¼ 6). It turns
out (and this can be shown by our implementation of Wer-
theim’s theory) that for the pearl-necklace model, the p* versus
y plot is hardly affected by m. In other words when m becomes
very large the p* versus y representation is practically identical
to that presented in Fig. 15 for m¼ 6. The results presented in
Fig. 15 are very close to this asymptotic limit. However for the
LTHS the diagram changes quite dramatically with m. Basi-
cally as m increases the p* becomes smaller for a certain value
of y. The I–N transition moves to lower and lower densities as
m increases and therefore the range where theN phase is stable
increases. The volume fractions at which the N–SmA or SmA–
solid phase transitions occur are hardly affected by the value of
m. This is expected if one examines the phase diagram of hard
spherocylinders obtained by Bolhuis and Frenkel.46

IV. Hybrid model

The hybrid model consists of 15 overlapping hard sphere
interaction sites,9 with one extreme of the model being flexible
and the other extreme completely rigid. Simulations were
performed using configurational bias Monte Carlo.47 We shall
classify the models by the number of monomers in the rigid
section followed by the number of monomers in the flexible
section. For example, the model with nine rigid monomers and
six flexible monomers is the ‘‘ 9+6’’ model. The results for the
EOS for the RFFFHS model for the models 15+0, 13+2,
11+4, 10+5, 9+6 and 8+7 are given in Fig. 16. In the
isotropic region the equation of state for each of the models
closely follow the TPT1 EOS. It is important to note that the
TPT1 EOS was designed for non-overlapping monomers. In
order to apply TPT1 to the RFFFHS model we make use of
the correction of Zhou et al.48 This correction provides an
effective number of monomers, meff for use in TPT1. For
L*5 0.5 this is given by

meff ¼
ð1þ ðm � 1ÞL*Þ3

ð1þ ðm � 1ÞL*ð3� L*2Þ=2Þ2
: ð20Þ

From Fig. 16 it can be seen that TPT1 is not only insensitive to
difference between fully rigid and fully flexible models, but also
for a hybrid model which is part rigid and part flexible. Results

for the virial coefficients in the isotropic phase are given in
Table 3.
As the packing fraction is increased liquid crystalline phase

formation is observed. In the 15+0 model nematic and
smectic phases are observed. Similarly for the 13+2, the
11+4 and the 10+5 models. However, a decrease in the
nematic region is found and the smectic region grows. This
indicates that the flexible tails help to stabilize the smectic
phase and reduce the nematic range. It is debatable as to
whether there exists a nematic range for the 9+6 model, and
the 8+7 shows no signs of liquid crystal phase formation. The
simulation results are summarized in Fig. 17.

V. Soft potential

In this section we focus on flexible Lennard-Jones (LJ) chains.
In the flexible LJ model each of the monomer sites is the center
for a LJ potential.5 Due to the presence of attractive forces the
model now presents a vapor–liquid equilibria region. Little is
known about the global phase diagram of this model (vapor,
liquid, and solid regions). Previous work has mainly focused
on the vapor–liquid equilibria, obtained either by way of
computer simulation or by theory.49–51 Here we focus on the
vapor–liquid equilibria of this model in the limit of very large
values of m. As mentioned in Section II, Wertheim’s TPT1 can
be used to describe LJ chains. The only requirement is a
knowledge of the EOS and structural properties (i.e. gref(s)) of
the reference LJ fluid. In particular we shall analyse the
predictions of Wertheim’s TPT1 concerning the scaling of the
critical properties in the limit of large values of m.

Fig. 16 Monte Carlo results for the EOS of the RFFFHS models in
the isotropic phase at medium densities (symbols). Results correspond
to (+) 8+7, (�) 9+6, (*) 10+5, (u) 11+4, (&) 13+2 and (�)
15+0. The dashed line represents the TPT1 EOS using the Zhou et al.
implementation.48

Fig. 17 The equation of state from the MC simulations. (+) 8+7
(isotropic); (�) 9+6 (isotropic); (*) 9+6 (nematic); (u) 9+6
(smectic); (&) 10+5 (isotropic); (�) 10+5 (nematic); (*) 10+5
(smectic); (4) 11+4 (isotropic); (m) 11+4 (nematic); (H) 11+4
(smectic); (!) 13+2 (isotropic); (�) 13+2 (nematic); (^) 13+2
(smectic); solid black pentagon 15+0 (nematic), and the 15+0
(smectic) is a bold open circle. The dotted curve represents the TPT1
EOS for the 15+0 RFFFHS model using the Zhou et al. correction.
The dot-dashed line is a sketch of the nematic-smectic transition
boundary.

Table 3 Calculated virial coefficients for the isotropic phase

mr mf B2* B3* B4*

15 0 12.906±0.002 55.86±0.03 � 9.1±0.26
14 1 12.854±0.003 56.16±0.03 � 2.8±0.21
13 2 12.737±0.008 56.50±0.02 5.5±0.14
12 3 12.602±0.006 56.81±0.08 14.6±0.31
11 4 12.469±0.015 57.21±0.03 23.3±0.86
10 5 12.239±0.008 57.51±0.14 23.3±0.86
9 6 12.115±0.019 57.95±0.12 46.1±0.91
8 7 11.879±0.003 58.20±0.13 60.5±1.02
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Let us consider a chain fluid at very low densities, where the
virial expansion, when truncated at B3 , provides a good
description for the EOS of the system. At these densities p can
be approximated as:

p

kT
¼ rþ B2r2 þ B3r3: ð21Þ

By solving the condition of critical point (i.e. by setting the first
and second derivative of pressure with respect to volume to
zero) one obtains:

rc �

ffiffiffiffiffiffiffiffi
1

3B3

s
¼ 0 ð22Þ

B2ðTcÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B3ðTcÞ

p
¼ 0: ð23Þ

The virial coefficients of a chain of m monomers units from
Wertheim’s TPT1 theory are given by:52

Bi ¼ mi brefi � m � 1

m
arefi

� 	
ð24Þ

where bi
ref stands for the ith virial coefficient of the monomer

reference fluid. Notice that for large values of m the virial coef-
ficient of the chain is given by a power of m times a function of
T. The function ai

ref is defined as:

@ ln grefðsÞ
@rref

¼ a2 þ a3rref þ . . . ð25Þ

where ai is the i� 1 coefficient of the expansion of
q ln(gref(s))=qrref in powers of the monomer density rref. The
relevant feature of eqn. (24) is that the ith virial coefficient
of the chain fluid scales as mi. In fact, one may regard
eqn. (23) as an equation defining the value of the critical tem-
perature and eqn. (22) as defining the critical density. For large
values of m B2 scales as m

2 and B3 scales as m
3. Therefore the

first term in eqn. (23) scales as m2 and the second term as m1.5.
For large values of m the first term dominates eqn. (23), and
therefore eqn. (23) is satisfied only when B2(Tc)¼ 0. Let us de-
fine the critical temperature of the infinitely long chain as the
Y temperature. The Boyle temperature TB is defined as the
temperature at which the second virial coefficient becomes
zero. It follows from eqn. (23) that in the limit of large values
of m the Y temperature is just the Boyle temperature of the in-
finitely long chain. Thus for infinitely long chains we have:

Y ¼ TB ð26Þ

Moreover for large values of m the result of eqn. (22) is simply
rc¼ 0. It is simple to show that pc¼ 0. By replacing in the virial
expansion for Z, the critical density obtained from eqn. (22)
and using eqn. (23) it can be shown that for very large values
of m the compressibility53 factor tends to 1=3. Therefore, if the
virial expansion truncated in B3 is sufficient to describe a chain
fluid, and if Wertheim’s TPT1 is valid to describe the virial
coefficients of the chain fluid, then it follows that for very long
chains (i.e. as m tends to infinity) that the critical number den-
sity of chains and the critical pressure go to zero, the compres-
sibility factor goes to 1=3, and that the critical temperature is
the Boyle temperature of the infinitely long chain. If higher
virial coefficients are included then we have:52

Y ¼ T1
B ð27Þ

TcðmÞ ¼ Yþ c

m1=2
þ d

m
þ . . . ð28Þ

rcðmÞ ¼ m�3=2 þ . . . ð29Þ

pcðmÞ ¼ m�3=2 þ . . . ð30Þ

ZcðmÞ ¼ 1

3
þ e

m2
þ f

m3
þ . . . ð31Þ

The scaling laws presented by eqns. (28) and (29) are identical
to the scaling laws of the Flory–Huggins theory for polymer
solutions.54 The scaling laws for pc and Zc are new since the
Flory–Huggins theory makes no predictions for the critical
pressure or compressibility factor (i.e. it is a lattice theory).
The variable rc stands for the critical number density of
chains. If one is interested in the critical mass density (i.e. mass
per unit of volume at the critical point) then one must realize
that the critical mass density is obtained as the product of the
molecular weight that scales as m times the critical number
density, which scales as m � 1.5. Therefore the critical mass den-
sity also goes at zero with m�0.5. In a sense the previous analy-
sis is an extension of the Flory–Huggins lattice theory to a
model in the continuum. Such an extension is made by
Wertheim’s TPT1 theory. The results presented above52,53,55

have also been derived independently by Lue et al.56 The fact
that according to Wertheim’s theory the critical mass density
and critical pressure must go to zero for very long chains has
important implications. It shows that the critical pressure
and mass density of polyethylene must go to zero for very long
chains.53,57,58 In spite of that a number of engineering correla-
tions still propose a non-zero critical pressure, and critical
mass density for polyethylene in the limit of infinite molecular
weight.59–61

The fact that according to Wertheim’s TPT1 the Y tem-
perature must be identical to the Boyle temperature for large
values of m has other interesting implications. It follows from
eqn. (24) that in the limit of large m the second virial coefficient
vanishes when:

bref2 ðYÞ � aref2 ðYÞ ¼ 0: ð32Þ

Notice that in the previous equations all terms are related to
properties of the reference fluid. By analyzing the virial
expansion of q ln(gref(s))=qrref in can be shown that the coef-
ficient a2 is given by:

a2 ¼ 4bref2 � 2bmd2 ð33Þ

where b2
md is the second virial coefficient between a monomer

and a dimer (the dimer being a diatomic molecule formed by
two rigidly bonded monomers at a distance s). By replacing
this result in eqn. (32) one obtains:

bref2 ðYÞ � 2

3
bmd2 ðYÞ ¼ 0: ð34Þ

Eqn. (34) is amazingly simple. It states that according to
Wertheim’s TPT1 the critical temperature of the infinitely long
chain (i.e. the Y temperature) is the temperature where the
second virial coefficient of the monomer reference fluid
becomes 2=3 of the second virial coefficient between a mono-
mer and a dimer.
Let us now consider the case of a square well chain, with

monomers interacting via the square well (SW) potential given
by:

u0ðrÞ ¼
1 ¼ r < d
�e ¼ d � r < ld
0 ¼ r � ld

8<
: ð35Þ

In this case the second virial coefficient between monomers,
b ref
2 and the second virial coefficient between a monomer and a
dimer b md

2 can be computed analytically. Substituting these
into eqn. (34) we obtain the Y temperature for SW chains:

e
kBY

¼ ln
3n2 � 2V2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2V2 � 3n2Þ2 þ 8V3ð2VT � 3nTÞ

q
4V3

0
@

1
A
ð36Þ
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where v2 , V2 , V3 , VT , vT are analytical functions of l (see ref. 55
for details). This a simple and interesting result. It means that
the Y temperatures that follow from Wertheim’s TPT1 can be
calculated with a pocket calculator. Eqn. (36) gives the value of
the Y temperature of SW chains (obtained from Wertheim’s
TPT1 theory) as a function of l. In Fig. 18 the Y temperature
of SW chains is plotted as a function of the range of the poten-
tial l. Instead of plotting Y, the ratio of Y to the Boyle tem-
perature of the monomer fluid (denoted as T ref

B ) has been
plotted. The solid line are the results from Wertheims’s
TPT1 theory (see eqn. (36)) whereas the dashed line corre-
spond to the estimate of the Boyle temperature of infinitely
long SW chains obtained numerically by Hall et al.62,63

Some interesting features present in Fig. 18 are the follow-
ing:
(i) The ratio Y=T ref

B is of order unity. In other words the Y
temperature of SW chains is close to the Boyle temperature of
the monomer reference fluid.
(ii) In general the ratio Y=T ref

B increases as l increases.
(iii) Wertheim’s TPT1 overestimates the Y temperature of

the polymer by 15%. Notice that in our description of the
reference fluid b ref

2 is determined analytically so that T ref
B is

obtained exactly. The discrepancy between theory and simu-
lation observed in Fig. 18 is exclusively due to the inaccuracy
of the theory in determining Y. Other authors have also
noticed that Wertheim’s TPT1 overestimates the critical tem-
perature of SW chains for finite values of m.49 Here we show
that the same is true for the critical temperature of infinitely
long chains.

VI. Conclusions

In this work the effect on flexibility on the phase diagram has
been studied for a number of simple models. The focus has
mainly been on hard models. Three models were considered
representing extreme cases. The first corresponds to a fully
flexible chain, the second to a rigid linear chain, and the third
to a hybrid model with rigid and flexible parts. For each of
these models, virial coefficient calculations, and NpT Monte
Carlo simulations were performed in order to determine the
differences and similarities in their behavior. For all phases
with an isotropic distribution of bond vectors we implement
Wertheim’s TPT1 theory (i.e. all isotropic fluid phases and the
solid phase of the pearl-necklace model). From this study we
can draw the following conclusions:

(i) Virial coefficients of rigid and flexible chains differ con-
siderably in their values and in their scaling laws. However the
value of B3 seems to be quite similar for both models (at least
for the values of m) considered.
(ii) At medium densities the EOS does not depend on the

presence or absence of flexibility. Wertheim’s TPT1 for the
EOS performs well in this density range. Although the indi-
vidual virial coefficients of rigid and flexible chains differ
considerably, it seems that their sum is insensitive to the pre-
sence or absence of flexibility.
(iii) The phase diagram of the pearl-necklace model is

somewhat unsurprising: displaying an isotropic fluid phase and
an ordered solid with disordered bonds. This was shown pre-
viously by Malanoski and Monson. We have demonstrated
that Wertheim’s TPT1 can be implemented to describe the
freezing properties of this model with high accuracy. In fact
Wertheim’s TPT1 predicts that the freezing properties of the
pearl-necklace model tend to asymptotic finite values for large
values of m. For instance the volume fraction at freezing for
flexible chains tends to 0.54 (hard spheres monomers freezes at
a volume fraction of about 0.49). Moreover the p* versus y plot
is almost independent of m for m> 6.
(iv) The phase behavior of rigid chains is more complex than

for flexible chains. For m¼ 6, isotropic, nematic, smectic A
and solid phases were found. The volume fraction at which the
isotropic–nematic transition occurs moves to zero as m

increases. However the volume fractions for the nematic–
smectic A, and smectic A–solid transitions is hardly affected by
m. For a given volume fraction the reduced pressure of the
fully rigid model is always below that of the flexible model.
This is mostly due to the appearance of phases where the
molecular bonds are ordered. This is the case of the solid,
smectic A and nematic phases. When the distribution of bond
vectors is isotropic, differences suddenly disappear between
rigid and flexible chain models.
(v) For the hybrid model (both rigid and flexible sections) we

found that the more flexible the molecule is the narrower is the
region of liquid crystal behavior and the later its onset.
Moreover it is found that flexibility destabilizes the nematic
phases and promotes the smectic phase.
(vi) For systems with LJ monomer beads our understanding

of the phase diagram is far from complete. A full comparison
between rigid and flexible molecules for these kind of mole-
cules would be very interesting. Here we have focused on the
vapor–liquid equilibria of flexible chains as obtained from
Wertheim’s TPT1. We have shown that according to Wer-
theim’s TPT1 the number density, mass density and pressure
vanishes at the critical point for infinitely long chains. The
compressibility factor however tends to a finite non-zero value.
The same is true for the critical temperature which tends to the
Boyle temperature of the infinitely long chain. Essentially we
recover the original results from the Flory–Huggins lattice
theory but now based on a well defined non-lattice fluid the-
ory. The Boyle temperature of this infinitely long chain that
follows from Wertheim’s TPT1 can be obtained by solving a
simple equation where only the second virial coefficient of the
monomer and the second virial coefficient between a monomer
and a dimer appears. In the particular case of square well
chains, these virial coefficients can be computed analytically,
thus yielding a simple analytical equation for the Y tempera-
ture of square well chains. TheY temperature is of the order of
the Boyle temperature of the monomer, and for reasonable
values for the range of the potential, somewhat larger.

In our view a number of problems remain to be clarified. In
particular the extension of Wertheim’s theory to phases with
ordered bonds would be an important step. Also the deter-
mination of the phase diagram of LJ flexible chains would be
quite useful. The same is true for the LJ version of the rigid
linear chains. Certainly the fully flexible model is somewhat

Fig. 18 Ratio between Y and the Boyle temperature of the reference
fluid T ref

B for SW chains as obtained from TPT1 (solid line) or from the
numerical results of Hall et al. (symbols).
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unrealistic and this is reflected in the ‘‘ curious ’’ type of solid
phase that it adopts. However, notice that by imposing an
arbitrary fixed bond angle (even in a model with tangent
flexible spheres) the existence of a fcc close packed structure
for the atoms becomes impossible. In this case the system must
freeze into a solid with ordering of bonds and with a sub-
stantial decrease in the flexibility of the molecule in the solid
phase. The study of such a model would bring us closer to a
polymer system.
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