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The second virial coefficient of 2-center Lennard-Jones molecules which have an embedded point quadrupole
has been determined via numerical integration. A number of models with different reduced bond lengths and
quadrupole moments have been considered. For each model the second virial coefficient has been determined
for a range of temperatures. It is shown that the presence of the quadrupole moment significantly raises the
Boyle temperature and, for a certain temperature, reduces the value of the second virial coefficient with respect
to the non-polar model. Empirical fits for B, are given which reproduce the generated data. It is also shown
that the inclusion of the quadrupole considerably improves the description of B, for real substances which
have a significant quadrupole moment, as is the case for CO, . The inclusion of the quadrupole is also required
for understanding the cross virial coefficient between a spherical and a quadrupolar molecule, for example the
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interaction between Xe and CO,.

1 Introduction

At low densities the equation of state of a gas can be described
by the virial expansion. In this expansion the compressibility
factor is given in powers of the density, and the coefficients of
the expansion are known as the virial coefficients. These virial
coefficients are temperature dependent (except for ‘hard body’
fluids). Virial coefficients of real systems can be measured
experimentally by a number of different techniques.!*? In the
early nineteen-thirties it was shown that the virial coefficients
can be determined if the intermolecular forces between the
molecules are known.3—3 Second, third, and fourth virial coef-
ficients can be computed by evaluating certain integrals
involving two, three and four molecules, respectively. The
expression for the second virial coefficient, B,, is especially
simple since it is given by minus one half of the integral of the
angle-averaged Mayer function over all possible values of the
distance between the center of mass (i.e. reference points) of
the two molecules. The second virial coefficient can be
obtained quite easily for molecules interacting through a pair
potential of spherical symmetry. B, can be numerically evalu-
ated in just a few seconds with currently available computers,
or, for hard spheres, square well (SW) potentials and for
Lennard-Jones (LJ) particles analytical expressions are avail-
able.* For hard convex bodies, B, can be determined analyti-
cally.® This is also the case for molecules which interact via
the Kihara potential.”"® However, in general, the only way of
determining B, is by numerically evaluating the integrals.

In the modeling of real fluids the interaction site model
(ISM) is probably the most popular. In this model atoms or
groups of atoms in the molecule are replaced by Lennard-
Jones interaction sites. For instance, N, is described by two
L1J sites located at, or near to, the two nitrogen atoms of the
molecule.®'® Another example is the modeling of hydrocar-
bons in computer simulations, which is usually performed by
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replacing the CH; and CH, groups by LJ interaction
sites.!?™13 The only way to determine B, for these non-
spherical models is to evaluate the integral numerically. Prob-
ably one of the simplest ISM is the two center Lennard-Jones
model (hereinafter denoted as 2CLJ). In this model the mol-
ecule is described by two LJ sites located at a distance of L
apart. This model can be very useful in describing diatomic
molecules such as N,, O,, F,, Cl,, or even polyatomic mol-
ecules such as ethane, ethene, acetylene or carbon
dioxide.>*%1* Determination of B, for 2CLJ models was per-
formed by Maitland et al. twenty years ago.!> In the appendix
of their book, they provide tabular results for B, for the 2CLJ
model as a function of the temperature and of the reduced
bond length L* = L/g. These are the parameters that are
required to define the geometry of the model, ¢ being the
characteristic parameter of the LJ interaction. Later,
Boublik'® evaluated B, for the 2CLJ model for other elon-
gations and temperatures (and also considered the linear
3CLJ and 4CLJ models). However, the 2CLJ should be con-
sidered as a first approximation to the pair interaction
between molecules such as those mentioned before. In fact, it
is well known that in N,, O,, F,, ethane and especially for
Cl,, ethene, acetylene, and CO, the charge distribution of the
molecule is not symmetric and therefore the molecule has a
non-zero quadrupole moment.!” The quadrupole moment
plays a fundamental role in understanding many of the
properties of these substances.

Somewhat surprisingly the study of the second virial coeffi-
cient of 2CLJ molecules which have an embedded quadrupole
moment (we shall call this the 2CLJQ model) has received
very little attention. One cannot provide an explanation for
the lack of data for this model since determination of B, for
these kinds of molecules can be readily performed nowadays
even with personal computers. Moreover, data of B, for
2CLJQ models can be useful in two different and complemen-
tary ways. First, the inclusion of the quadrupole will certainly
improve the description of B, for real substances. Secondly,
the data would clarify the effect that the quadrupole moment
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has on B, and other properties, such as the Boyle temperature
T; . The lack of data for B, is even more surprising taking into
account that the effect of the quadrupole moment on the
vapor-liquid equilibria’® or even in the fluid-solid
equilibria'®2° has been studied previously.

In this work it is our intention to fill this gap in the liter-
ature. In this paper we shall determine the second virial
coefficient for a number of 2CLJQ models for a range of
temperatures. In each of the cases the quadrupole moment
will be described by an ideal quadrupole located at the center
of mass of the molecule. Our aim is twofold. Firstly it will be
shown that the inclusion of the quadrupole considerably
improves the description of B, of real substances. Secondly,
our aim is to gain a basic understanding of the effect that the
quadrupole has on B, and other quantities, such as T;. For
2CLJQ molecules B, is a function of B,(T, L*, Q) hence the
quantity of generated data exceeds that which can be pre-
sented in a tabular way. For this reason, empirical fits are
provided for B, .

The layout of the paper is as follows. In Section 2 we
present details of the model and the calculation of B,. In
Section 3 we calculate, and provide empirical fits for, B, and
T; for a number of 2CLJQ models. Also in this section the
2CLJQ model is used to describe the second virial coefficient
of real susbstances and mixtures.

2 Model and calculation details

In this work molecules are described by a two center
Lennard-Jones model (2CLJ). The two sites are located at a
distance of L apart and are identical, thus describing homo-
nuclear diatomic molecules. The parameters controlling the
Lennard-Jones interaction (LJ) are ¢ and &. At the center of
mass of the molecule we locate a point quadrupole. We shall
denote this model as the two center Lennard Jones quadru-
polar model (2CLJQ). The model is described by two reduced
quantities, namely, the reduced bond length L¥ = L/o and the
reduced quadrupole moment (Q*)? which is obtained by:

2
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The pair interaction between a pair of molecules is given by:
2 2
ul,2) =Y Y u +ugy 0]
i=1j=1

where u;; and u,,, are given by:
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where r;; is the distance between site i of molecule 1 and site j
of molecule 2, r* =r/o is the reduced distance between the
centers of mass of the molecule and the meaning of c; =
cos(8,), s; = sin(f;) and c¢,, = cos(¢, — ¢,) is illustrated in Fig.

The reduced second virial coefficient Bf = B,/a> has been
computed as a function of the reduced temperature T* = T/
(¢/k) for a number of linear models. We have considered
models with L* =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and
with (0*)? =0, 0.5, 1, 1.5, 2, 3, 4. In total, we consider 77
models in this study.

The value of the second virial coefficient of a molecule can
be obtained by evaluating the following expression:

B,=— % J((exp(—ﬂu)) — Ddnr? dr (5)
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Fig. 1 Model used in this work.

where f = 1/(kT), r is the distance between the center of mass
of two molecules and {exp(— fu)) is the orientational average
of the Boltzmann factor between two molecules for a fixed
value of r. Obviously, the complexity of the calculation of B,
for a non-spherical molecule arises in the determination of
{exp(— pu). In this work <{exp(— pu)> was evaluated for each
value of r using Conroy’s integration method?! as implement-
ed by Nezbeda et al.??> We used 76079 relative orientations
for each value of r (which corresponds to M = 152158 and
d = 6 in the Nezbeda et al. paper). The average {exp(— pu)) is
evaluated for 451 different values of r (from r=0 up to
r = 200). Finally the integral of eqn. (5) is obtained by using
Simpson’s integration rule. For each model B, has been evalu-
ated for about 200 different temperatures. The calculation of
B, for a certain model requires ca. 1 h of CPU time on a
PentiumIII 400 MHz personal computer. Therefore the total
CPU time used in this work constitutes around three days of
CPU time. That clearly illustrates how the determination of
B, for 2CLJQ falls within the range of affordable problems
with current computers.

3 Results

Let us start by analyzing the effect of the quadrupole moment
on B, . For this purpose we shall compare B, for two models
which have the same elongation but having different quadru-
pole moments. In Fig. 2a results are shown for two models
with the same anisotropy (i.e. L* = 1) but with different quad-
rupole moments (i.e. (Q*)? = 0, 4). Results are presented as a
function of the reduced temperature, defined as T* = T/(¢g/k).
As expected, for a given temperature the second virial coeffi-
cient becomes lower for the quadrupolar model. Notice that
although the un-weighted orientational average of the quadru-
polar potential is zero, {uyey = 0, this is not the case for the
average of the Boltzmann factor.!” Therefore the presence of
the quadrupole increases the strength of the attractive forces
in the system, which explains the decrease in B, for a certain
temperature. Notice that the effect of the quadrupole on B¥ is
very small at high temperatures. In Fig. 2b results are present-
ed for two models with L* = 0.3 and different quadrupole
moments. Similar conclusions are obtained in this case.

In Fig. 3a the second virial coefficient for (0*)* =0 is
plotted for two values of L*, namely L*¥* = 0.3 and L*¥ = 1. In
Fig. 3b similar results are presented for (0*)?> = 4. As can be
seen, for a certain value of the quadrupole the shorter mol-
ecule yields a lower value of B%. Notice that differences in B,
for two different elongation do not disappear at high tem-
peratures.
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Fig. 2 Reduced second virial coefficient Bf = B,/s> as a function of

the reduced temperature T* = T/(¢/k) for molecules with (Q*)? =0

(solid line) and (Q*)*> =4 (dashed line). (a) Results for L* = 1; (b)

results for L* = 0.3.
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Fig. 3 Reduced second virial coefficient for models of different elon-
gation L* = 0.3 (solid line) and L¥ =1 (dashed line). (a) When the
reduced quadrupole moment is zero; (b) when the reduced quadrupo-
le moment is (Q*)? = 4.

In addition to the second virial coefficient calculations we
have also determined the Boyle temperature, T;, of each
model. The Boyle temperature is defined as the temperature
where:

BT =Ty =0 (6)

In Fig. 4 the Boyle temperature is plotted as a function of L*
for two values of (0*)?, namely (Q*)*> = 0, 4. We can see that
Ty decreases with L* and increases with (Q*)2. We should
mention that for L* = 0 and (Q*)*> = 0 we recover the Boyle
temperature of the spherical LJ system. Notice however, that
when L* = 0 the 2CLJ model becomes a LJ system with four
identical interactions instead of the usual one with just one
interaction. This explains why our curves of Tj tends to four
times the Boyle temperature of the LJ fluid when L* tends to
zero. Results of the Boyle temperature for the models con-
sidered in this work are presented in Table 1.

The number of generated data for B, for the 2CLJQ is of
the order of 20000 points. Therefore, tabular presentation is
out of question. The original data can be obtained from the
authors upon request or directly from the electronic supple-
mentary information (ESI) system of this journal.}

We have fitted our values to an empirical expression. The
proposed expression is as follows:

Bf = ((d, +dy [* + dy L**> + d, L*3)
+ 0**(cy + ¢y L¥ + c5 L*?)
+ Q**(cy + c5 L* + cx L*?))
+(ds + dg L* + d; L** + dg L*3)
+ 0**(cq + cg L* + cg L*?)
+ Q*4(C10 + e L* +¢qy L*z))/T*
+ (do + dyo L* + dyL*?)
+ QZ*(CH + e L* + ¢y L*?)
+ Q*4(Clé +ce L + C18L*2))/T*2
+((dyy +dys L¥ + dyy L¥?)
+Q*2(019 + ey LF + Cz1L*2)
+ Q*4(sz + ey L + 024L*2))/T*3
+ (dys + dy L* + dy, L*?)
+ Q*z(czs + C6 L* + ¢y L*?)
+ Q*4(czs + ¢ L* + c30 L*Z))/T*4
+ (dyg + dyo L¥ + dyo L*?)
+ Q*2(031 + 3 L + CsaL*Z)
+ Q*4(Cs4 + c35 L* + c36 L¥2)/T*3
+ (day + dyy L¥ + dyy L*?)
+ Q% (ca7 + ca5 L* + c39 [*?)
+ Q**(cqo + Cay L + ¢4y L¥?)/T*C (M

As can be seen in our trial equation for the fit, the reduced
second virial coefficient is fitted as a polynomial of the
reduced inverse temperature?®?4 1/T*. We also tried a
polynomial?® of 1/, /(T*) but the results were not significantly
better. The coefficients of the expansion are fitted to a quadra-
tic polynomial in (Q*)?. The coefficients labeled as d; were first
obtained by fitting the results for the non-polar models. Once
obtained, the coefficients ¢; were obtained by including the
data for the quadrupolar models. For each model, the range
of reduced temperatures considered is chosen as follows. The
minimum temperature T, corresponds to the temperature
for which Bf ~ —55 and the maximum temperature T%,, cor-
responds to T¥. The parameters obtained from the fit are pre-
sented in Table 2. The fit of eqn. (7) should not be used
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Fig. 4 Reduced Boyle temperature 7§ as a function of the bond
length for (Q*)? = 0 (solid line) and (Q*)* = 4 (dashed line).

outside of the range for which it was designed, which corre-
sponds to L* = (0.2, 1) (that covers the typical range of lengths
for real diatomic molecules), (Q*)*> = (0, 4), and T =(T,,,,
T,...)- The error of the fit is:

263
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N

0.08 ®)

points

We have also separately fitted the results for L* = 0 (i.e. for
quadrupolar spherical molecules) after having found that a
direct fit of the lengths L* = (0, 1) substantially increases the
error in the fitted points. We have fitted Bf of the spherical
molecule to the following expression:

Bf =
(dy + ¢10%* + ¢, Q% + ¢; 0% + ¢, 0*F)
+(dy + ¢5 0% + ¢ O** + ¢, 0% + ¢ Q*8)/T*
+(d3 + ¢ Q% + ¢10 Q% + ¢ 10*C + ¢;, Q*8)/T*>
+(dy +c130% + ¢4 0% + 015 0% + €16 0*°)/T*?
+(ds + €17 0% + c15 0% + €19 %5 + 0 0*8)/T**
+ (dg + €210%% + €35 0% + ¢33 0% + ¢, Q*%)/T*3
+(d7 + €35 0% + €6 0% + €57 0%5 + ¢,5 0*8)/T*S  (9)

The parameters of the fit of B for spherical quadrupolar
models are presented in Table 3. The error of the fit for the
spherical quadrupolar molecule is:

221;46 | B; - Bg(fitted)l _
Npoints

We shall now illustrate how the results for B, of 2CLJQ mol-
ecules can be applied to real models. Let us take CO, as an

0.02 (10)

Table 1 Reduced Boyle temperature T3F = Ty/(e/k) of 2CLJIQ
models for several reduced bond lengths and quadrupoles

0*?
L 0 0.5 10 15 2 3 4

00 3418 3513 3780 4187 4705 5999  7.563
0.1 12827 12.849 12913 13.019 13.165 13.570 14.114
02 11.044 11060 11.110 11.191 11.304 11.618 12.042
03 9269 9283 9321 9.384 9471  9.713 10.039
04 7822 7835 7867 7919 7989 8184  8.445
05 6705 6719 6749 6795 6856  7.022 7242
06 5852 5868 5898 5942 5999 6148  6.344
0.7 5196 5216 5248 5292 5347 5490  5.672
08 4688 4712 4747 4793 4849 4991  5.168
09 4290 4319 4358 4407 4467 4612 4792
1.0 3976 4009 4053 4108 4172 4328 4518
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Table 2 Parameters of the fit for the second virial virial coefficient of
2CLJQ models (see eqn. (7) of the main text.) The range where this fit
is valid corresponds to L* = (0.2-1), (Q*)* = (0-4), Bf > —55 and
T<Ty

d, = 1.898 752869 394235
dy = —2.4663734743339507
dy = 12.293229.090 338 604
d, = —9.673895464 383694 1
dg = —21.149 276 727890 463
dy = 28.904989 450 954 062
d, = —46.051 630659 710924
dg = 41.087 573327607871
dy = —43.988 684129240617
dyo = 70.285714711 082861
dy, = —82.536277918 044 888
dy, = 13.144173 894 436 049
dy5 = 29.103 500294 603 936
dy, = 11.617216 129160 731
dys = —40.670962 084910947
dy = 6.824 5816773650869
dy, = 0.894477026 440 63287
dys = —15.292445 640454407
dyo = 56.283981168 719 741
dyo = —35.166226 201 495178
dy, = 16766 523 131527563
d,, = —40.554245351098 778
dyy = 23345122678 621983
¢, = 0.245883 198 304 388 01
¢, = —0.966 492720 502 57495
¢y = 0910518 182022073 46
¢, = —0.132645233 26598501
¢s = 0.561523 59132649177
e = —0.747773 848 267097 36
¢, = —2.5288845689058226
¢ = 8.266395658 068 1024
o = —7.162937621 5807579
¢o = 1.3211904727638704
¢y = —4.177144662831516 1
¢y, = 6.271011798 369 444
¢y3 = 8.785276 382966 8277
C1s = —19.487038352378 768
¢,s = 12.079315006 562 526
Cre = —7.033983804895499 7
¢y =9.665192819 141443 8
15 = —16.541412215774777
co = — 11244081 313925605
€0 = 9450825035927 826 1
Cyy = 2.1925157654058007

Cy, = 12.643 160083 087 501
Cps = 7.145011 135708 6312
Cpa = 5605752402850 3209
Cps = 5.552709 239 457886 5

Ch6 = 3.267 348045863 379
c,; = —10.397 634077097 413
Cg = —29.325145207901 176

Cho = 9.826219 509 798 299 6
c30 = —4.762111811460831
c3; = 7.260212703 708 4356
c3, = 3.670369021231 4113

Cys = —8.3655257222889876
Cys = 5302898011918 5158

Cys = 14.048 340476 474 802

Cye = —11.825790877 347865
Cyy = — 7377225658 874543 5
Cys = —0.637429271929039 64
Cao = 6493822759856 1822
Cao = 9.270272567768 373 1

Cay = —23.536291394 452547
Car = 14.402791 576 965 646

example. The second virial coefficient of CO, has been mea-
sured experimentally for a number of temperatures.?® Let us
now try to describe the experimental data with the 2CLJQ
model. One possibility is to find the values of L*, (0*)?, o, and
¢ that provide the best agreement with the experimental
results. One drawback of this method is that the parameters
obtained in this way lack any physical meaning. It seems more



Table 3 Parameters of the fit (see eqn. (9) of the main text) for the
second virial virial coefficient of the spherical LJ quadrupolar model.
The range where this fit is valid corresponds to L* = 0, (0*)? = (0-3),
B> —-40and T < T

d, = 1.533868 6833399349
d, = —4.568 6955902179731
dy = —2.3177758510108624
d, =0.192414 321560942 35
ds = —0.123543159175493 81
dg = —3.639064 75784654612 x 1072
d, =13.37166253548340815 x 1073
¢, = 0225541268 98744087
¢, = —0.162 585189 859 545 54
cy = —0.105490411759 388 86
¢y = 2.665934 668 49528553 x 102
cs = —0.686220139455147 37
ce = —2.184 890959443 5852
¢, = 2711569034953 109 6
cg = —0.396 591794 574 943 04
cyg = —1.821823061439928 4
cio = 14246453361 099 661
cy; = —10.933746 864 066 601

¢y, = 0.685138705436027 4
cy3 = 5.512334219 305183

€1y = —24.945763 515067306
cs = 54239756775738694
Cro = 3.0211531654179082
c1; = —0.366 181 500998 445 6
c1s = —0.462721898 042653 73
¢yo = 18.796 536774 318 561
Cyo = —6.583773 6461090923
¢y = 2.605438 882170298 5
Cpp = —9.704249 155834423 5
Cps = 7.255901 2410574377
Cps = —6.283868083 1429805
Cys = —3.278 3434947051862
e = 12.335695801 686716
Cyy = — 14002835402 583 143

2
(s = 5.789219550064 6819

appropriate to derive the value of some of the parameters
from physical considerations. For instance, the bond length
and molecular volume of many real molecules are well known.
Therefore, our suggestion is to obtain L* and ¢ from the
molecular volume and the bond length (in the case of a
diatomic molecule). Thus, once the bond length and molecular
volume are known, this will determine L* and ¢ by noting
that the bond length L and molecular volume V, of a
diatomic molecule are given by:

L =I*s 11)
v, = g o(1 + L5L* — 1/2(L*)%) (12)

In the case of a triatomic molecule as CO, it is not so obvious
how to map the molecule into a 2CLJQ model. We should
mention that CO, has been described by a 2CLJQ model pre-
viously in a number of papers.>1%# Also, CO, has been
described succesfully by wusing the Kihara quadrupolar
model.2” The reduced bond length used commonly for CO, in

Table 4 Parameters used to describe real molecules with the 2CLJQ
model

Substance L/A a/A (e/k)/K /(10726 esu)
Xe 0 4.099 224.5 0

CoO, 2.3572 2.946 123.0 —4.5

CO, 2.3572 2.946 161.10 0

Ethane 1.54 3.825 103.31 0

Ethylene 1.34 3.79 83.85 4.0

a number of models is close to L* = 0.80, the typical width of
the molecule?®2° being about ¢ =295 A. These values
provide a good description of the liquid phase properties, and
as such they can be taken as being reasonable. How do we
determine the other two parameters, namely, ¢ and (Q*)?? For
a number of substances the quadrupole moment has been
determined experimentally. See for instance the excellent
review by Gray and Gubbins for extensive tables of quadru-
pole moments.!” It should be mentioned however, that the
typical uncertainty of experimental values is quite large and
can be of up to 40%. Once the experimental value of the
quadrupole moment, Q.,,, is known, the reduced quadrupole
is obtained from the formula:

85.11025Q..,
(¢/k)a/A)°

where Q.. is given in units of 1072° esu (which is the stan-
dard way of reporting the experimental values). For CO, the
experimental'”3° value of the quadrupole moment is Q. =
—4.5 (in 10~ 2° esu units) although some recent measurements
suggest the somewhat lower value Q,,, = —4.0.>! Once L*, o
and Q.,, are derived we proceed as follows. A value for ¢ is
chosen. By using this value of & the reduced quadrupole
moment is obtained from eqn. (13). The value of B, is then
computed for this model at T = 273.15 K and is compared
with the experimental value. If they do not match then
another value of ¢ is chosen and B, is recalculated. This is
repeated until for a certain choice of ¢ the calculated and the
experimental value of B, at T = 273.15 K match. In Table 4
the parameters used to describe CO, are shown. In Fig. 5 B,
for CO, is shown. Symbols correspond to experimental results
and the solid line represents the results obtained in this work
using the model described in Table 4. As can be seen, the
agreement between experimental and theoretical predictions is
rather good. Let us now illustrate how the inclusion of the
quadrupole moment is essential to the description B, for
CO,. For that purpose we shall use a second model which
has the same value of L* and ¢ but with (Q*)? = 0. The value
of ¢ for this non-polar model is again obtained by fitting B, at
T = 273.15 K. The value of ¢ for this non-polar model is given
in Table 4. Notice that when the quadrupole is not included a
larger value of ¢ is needed to reproduce the second virial coef-
ficient at T = 273.15 K. Therefore we forced both models, the
quadrupolar and the non-polar models to reproduce B, of
CO, at T = 273.15 K. In Fig. 5 the theoretical predictions for
the non-polar model are shown as a dashed line. As can be
seen, the non-polar model does not provide such a good

Q%) = (13)
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Fig. 5 Second virial coefficient of CO, as obtained from experiment
(symbols) and from the calculations of this work for the 2CLJQ
model. The parameters used for the 2CLJQ are those given in Table
4. Results for (Q*)* =0 (dashed line), results for the quadrupolar
model of CO, described in Table 4 (i.e. (Q*)* = 5.47) (solid line).
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description of the experimental results. The conclusion that we
come to by looking at Fig. 5 is that the inclusion of the quad-
rupole moment significantly improves the description of the
second virial coefficient of a molecule such as carbon dioxide.
When attractive dispersion forces from the 2CLJQ are
replaced by a more sophisticated version obtained from
quantum mechanical calculations the agreement between
experiment and calculations can even be quantitative.>? This
is not only true for gas phase properties. It is well known that
the inclusion of the quadrupole greatly improves the descrip-
tion of liquid phase properties, and it is absolutely essential'®
for the description of the solid phase of CO, (without the
quadrupole it is impossible to stabilize the experimental solid
phases of CO,).

Although we have presented results for CO, the same pro-
cedure can be applied to other substances. We hope the
results provided in this work (along with the fits) encourage
further application of the 2CLJQ model to the description of
B, to real substances.

All the results presented so far correspond to pure fluids.
However, the inclusion of the quadrupole can be important in
order to understand some properties of mixtures. The second
virial coefficient of a binary mixture is given by the following
expression:

B, = x?B!! 4+ 2x,x, B1? + x2 B2> (14)

where B is the second virial coefficient of component i, and
BY is the crossed second virial coefficient between component
i and component j. The crossed second virial coefficient
between Xe and several molecules (i.e. CO,, ethane and
ethylene) have recently been measured experimentally.33:34
We shall try to describe the experimental values. For that
purpose the parameters of the 2CLJQ model were obtained
for the pure substances by imposing values for L*, ¢ and Q,,,
and choosing ¢ to reproduce the experimental value of B, at
T = 273.15 K. The values of ¢ and L* for Xe, ethane and
ethylene were taken from parameters that correctly describe
the liquid phase*3337 and the reduced quadrupole is
obtained by using the experimental value of the quadrupole
moment.!”

The parameters obtained are presented in Table 4. In Table
5 the second virial coefficient at T = 273.15 K as obtained
from experiment and from our fit are shown. Obviously the
agreement is excellent since we forced ¢ to reproduce the
experimental results. Once the parameters for the pure sub-
stances have been determined we shall assume that the param-
eters for the cross interaction in the mixture are given by the
Lorenz-Berthelot combination rules:

& = (e8;)"" (15)
Oij = (05 + ‘7jj)/2 (16)

Sometimes additional parameters are included to account for
possible deviations from the Lorentz—Berthelot rules but here
we shall assume that they are valid. In eqn. (1) we replace
(0*)? by Q*Q% where (Q,)* and (Q,)* are the reduced quadru-
pole moments of molecules 1 and 2, respectively. In Table 6

Table 5 Second virial coefficient at T = 273.15 K in cm® mol~? as
obtained from experiment and from the calculations of this work for
the 2CLJQ model with the parameters of Table 4. The value of ¢
presented in Table 4 was chosen to reproduce the experimental value
at this temperature

Substance Experimental Calculated
Xe —155.7 —155.6
CO, —150.7 —150.6
Ethane —2229 —222.7
Ethylene —168.8 —168.6
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Table 6 Crossed second virial coefficient B;, at T =273.15 K in
cm?® mol~! as obtained from experiment and from the calculations of
this work for the 2CLJQ model with the parameters of Table 3 and
the Lorentz—Berthelot rules for the crossed interaction

Mixture Experimental Calculated
Xe-CO, —1264 —129.4
Xe-Ethane —187.2 —187.6
Xe-Ethylene —158.4 —158.8

the crossed virial coefficients obtained from experiment and
from the calculations are presented. The agreement between
experiment and our calculations is quite good. Notice that
although we have fitted the results for the pure components it
is not obvious that the calculations should be able to accu-
rately reproduce the crossed virial coefficient.

Let us analyze in more detail the results for the Xe + CO,
mixture. As can be seen in Table 5, for T =273.15 K the
values of B, for Xe and CO, are —156 cm® mol~! and —151
cm?® mol ™!, respectively. One would naively expect that the
crossed virial coefficient will fall between those two values
(this is quite often found experimentally for many other
systems). However, the experimental value of B,, for this
mixture is B;, = —126 cm® mol~!. How does one explain
such a large deviation? The calculations reproduce this trend
since they yield B;, = —129 cm® mol~!, which is in fair
agreement with the experimental result. The calculations
provide the answer to this puzzling feature. The value of
B,, for this mixture arises from the fact that there is no
quadrupole—quadrupole interaction between Xe and CO,
since the quadrupole moment of a spherical molecule, such as
Xe, is zero. Since the quadrupolar interaction is missing the
interaction between these two molecules is less attractive and
that explains the high value of B,,. Basically the value of B, ,
is given by the dispersion interactions between Xe and CO,.
Therefore the presence or absence of quadrupole moment in
one or both of the two molecules of a mixture can be very
important in correctly describing the crossed virial coeffi-
cient.>® The high value of B, , also suggests low miscibility for
Xe and CO, in the liquid phase. We should mention that in
this study we have not included polarizability within the
model. The fact that spherical molecules can be polarized by a
polar molecule has not been considered here although, as
shown in a recent work, the effect may be important especially
for the case of a spherical particle interacting with a dipolar
one.*®

The results given in Table 6 show that the second virial
coefficient between a spherical molecule and a molecule with a
strong quadrupole moment is significantly higher than one
should expect. The reason for this is that the polar interaction
does not appear in the crossed interaction.

We shall finish by evaluating some other properties of inter-
est for the ethylene + CO, mixture. The Joule-Thomson coef-
ficient of a pure fluid is usually obtained from the following
relationship:

0 — dB,
=B, —T = (17)

The coefficient °¢_ ;... for the mixture is then obtained

from:

P mixture = X1 %P1 + x5 %05 + 2x,%, %04, (13)

where °¢,, °p, are the values of the Joule-Thomson coeffi-
cient for components one and two, respectively, and °¢, , is the
value of the Joule-Thomson coefficient for the cross inter-
action. In Fig. 6 results are presented for the Joule-Thomson
coefficient for ethylene + CO,.*® Symbols correspond to
experimental results whereas the solid line corresponds to the
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Fig. 6 Joule-Thomson coefficient for the ethylene-CO, mixture at
T = 298.15 K as obtained from experiment*° (filled symbols) and for
the 2CLJQ model with the parameters presented in Table 4. The open
symbol for pure CO, has been evaluated by using eqn. (17) and the
most recent experimental data available for B, of CO, .

calculations of this work. As can be seen the calculations show
fair agreement with experiment. It should be noted that for
pure CO, the experimental value of °¢, is probably too high.
In fact, re-evaluating °¢p, with the best data currently avail-
able for the second virial coefficient of CO, yields the point
denoted by the open circle of Fig. 6. This example illustrates
that not only virial coefficients but also other related proper-
ties, such as the Joule-Thomson coefficient, can be obtained
from the calculations.

4 Conclusions

In this paper the second virial coefficient has been calculated
for a number of two-center LJ models which have a point
quadrupole. Elongations in the range L* = (0-1), and quadru-
pole moments in the range (Q*)? = (0-4) were considered. In
total, 77 different models have been analyzed. For each model
B, has been computed for around 200 different temperatures.
The experimental results of B, were fitted to an empirical
expression. The Boyle temperature was also computed for
those 77 different models. The source data as well as the
programs of the fit are available upon request
(cvega@eucmos.sim.ucm.es) or can be obtained directly from
the electronic supplementary information (ESI) system of this
journal.}

The presence of the quadrupole moment is seen to reduce
the second virial coefficient with respect to that of the non-
polar model. The inclusion of a quadrupole serves to increase
the value of the Boyle temperature.

It has also been shown how the introduction of the quadru-
pole significantly improves the description of the second virial
coefficient for molecules which have a large quadrupole
moment, as is the case for carbon dioxide. We hope the data
obtained in this work can be useful for workers trying to
describe experimental results of B, of real substances with the
2CLJQ model. Even those workers looking for potential
parameters to describe liquid properties can benefit from these
kinds of studies. In fact, they could proceed in a two step
approach in the search of the potential parameters set. They
can first determine a set of potential parameters describing the
gas phase (i.e. the second virial coefficient) and then proceed
to a refinement of the parameters by using computer simula-
tions in the liquid phase. It should be stated that parameters
describing gas phase properties do not describe particularly
well the liquid phase properties and vice versa. One should
bear in mind that three body forces play an important role in
determining liquid phase properties whereas they do not
appear in the gas phase. Therefore, potential parameters

determined for the liquid phase can be considered as effective
potential parameters rather than the true pair potential
parameters.

We have also shown that the quadrupolar interactions play
an important role in understanding the crossed second virial
coefficient B;, between spherical and polar molecules. In par-
ticular, we have shown that the anomalous low value of B,
for mixtures as Xe and CO, is due to the absence of quadru-
polar energy in the pair interaction.

Work on the determination of the third virial coefficient for
2CLJQ is in progress. Also, to the best of our knowledge there
has been no calculation of the third virial coefficient for the
non-polar 2CLJ model. Furthermore, a study of the effect of a
dipole moment on the second virial coefficient would be of
much interest.*!
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