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The second virial coefficient of 2-center Lennard-Jones molecules which have an embedded point quadrupole
has been determined via numerical integration. A number of models with di†erent reduced bond lengths and
quadrupole moments have been considered. For each model the second virial coefficient has been determined
for a range of temperatures. It is shown that the presence of the quadrupole moment signiÐcantly raises the
Boyle temperature and, for a certain temperature, reduces the value of the second virial coefficient with respect
to the non-polar model. Empirical Ðts for are given which reproduce the generated data. It is also shownB2
that the inclusion of the quadrupole considerably improves the description of for real substances whichB2
have a signiÐcant quadrupole moment, as is the case for The inclusion of the quadrupole is also requiredCO2 .
for understanding the cross virial coefficient between a spherical and a quadrupolar molecule, for example the
interaction between Xe and CO2 .

1 Introduction
At low densities the equation of state of a gas can be described
by the virial expansion. In this expansion the compressibility
factor is given in powers of the density, and the coefficients of
the expansion are known as the virial coefficients. These virial
coefficients are temperature dependent (except for “hard bodyÏ
Ñuids). Virial coefficients of real systems can be measured
experimentally by a number of di†erent techniques.1,2 In the
early nineteen-thirties it was shown that the virial coefficients
can be determined if the intermolecular forces between the
molecules are known.3h5 Second, third, and fourth virial coef-
Ðcients can be computed by evaluating certain integrals
involving two, three and four molecules, respectively. The
expression for the second virial coefficient, is especiallyB2 ,
simple since it is given by minus one half of the integral of the
angle-averaged Mayer function over all possible values of the
distance between the center of mass (i.e. reference points) of
the two molecules. The second virial coefficient can be
obtained quite easily for molecules interacting through a pair
potential of spherical symmetry. can be numerically evalu-B2ated in just a few seconds with currently available computers,
or, for hard spheres, square well (SW) potentials and for
Lennard-Jones (LJ) particles analytical expressions are avail-
able.4 For hard convex bodies, can be determined analyti-B2cally.6 This is also the case for molecules which interact via
the Kihara potential.7,8 However, in general, the only way of
determining is by numerically evaluating the integrals.B2In the modeling of real Ñuids the interaction site model
(ISM) is probably the most popular. In this model atoms or
groups of atoms in the molecule are replaced by Lennard-
Jones interaction sites. For instance, is described by twoN2LJ sites located at, or near to, the two nitrogen atoms of the
molecule.9,10 Another example is the modeling of hydrocar-
bons in computer simulations, which is usually performed by
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replacing the and groups by LJ interactionCH3 CH2sites.11h13 The only way to determine for these non-B2spherical models is to evaluate the integral numerically. Prob-
ably one of the simplest ISM is the two center Lennard-Jones
model (hereinafter denoted as 2CLJ). In this model the mol-
ecule is described by two LJ sites located at a distance of L
apart. This model can be very useful in describing diatomic
molecules such as or even polyatomic mol-N2 , O2 , F2 , Cl2 ,
ecules such as ethane, ethene, acetylene or carbon
dioxide.9,10,14 Determination of for 2CLJ models was per-B2formed by Maitland et al. twenty years ago.15 In the appendix
of their book, they provide tabular results for for the 2CLJB2model as a function of the temperature and of the reduced
bond length L* \ L /p. These are the parameters that are
required to deÐne the geometry of the model, p being the
characteristic parameter of the LJ interaction. Later,
Boublik16 evaluated for the 2CLJ model for other elon-B2gations and temperatures (and also considered the linear
3CLJ and 4CLJ models). However, the 2CLJ should be con-
sidered as a Ðrst approximation to the pair interaction
between molecules such as those mentioned before. In fact, it
is well known that in ethane and especially forN2 , O2 , F2 ,

ethene, acetylene, and the charge distribution of theCl2 , CO2molecule is not symmetric and therefore the molecule has a
non-zero quadrupole moment.17 The quadrupole moment
plays a fundamental role in understanding many of the
properties of these substances.

Somewhat surprisingly the study of the second virial coeffi-
cient of 2CLJ molecules which have an embedded quadrupole
moment (we shall call this the 2CLJQ model) has received
very little attention. One cannot provide an explanation for
the lack of data for this model since determination of forB2these kinds of molecules can be readily performed nowadays
even with personal computers. Moreover, data of forB22CLJQ models can be useful in two di†erent and complemen-
tary ways. First, the inclusion of the quadrupole will certainly
improve the description of for real substances. Secondly,B2the data would clarify the e†ect that the quadrupole moment
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has on and other properties, such as the Boyle temperatureB2The lack of data for is even more surprising taking intoTB . B2account that the e†ect of the quadrupole moment on the
vaporÈliquid equilibria18 or even in the ÑuidÈsolid
equilibria19,20 has been studied previously.

In this work it is our intention to Ðll this gap in the liter-
ature. In this paper we shall determine the second virial
coefficient for a number of 2CLJQ models for a range of
temperatures. In each of the cases the quadrupole moment
will be described by an ideal quadrupole located at the center
of mass of the molecule. Our aim is twofold. Firstly it will be
shown that the inclusion of the quadrupole considerably
improves the description of of real substances. Secondly,B2our aim is to gain a basic understanding of the e†ect that the
quadrupole has on and other quantities, such as ForB2 TB .
2CLJQ molecules is a function of L*, Q) hence theB2 B2(T ,
quantity of generated data exceeds that which can be pre-
sented in a tabular way. For this reason, empirical Ðts are
provided for B2 .

The layout of the paper is as follows. In Section 2 we
present details of the model and the calculation of InB2 .
Section 3 we calculate, and provide empirical Ðts for, andB2for a number of 2CLJQ models. Also in this section theTB2CLJQ model is used to describe the second virial coefficient
of real susbstances and mixtures.

2 Model and calculation details
In this work molecules are described by a two center
Lennard-Jones model (2CLJ). The two sites are located at a
distance of L apart and are identical, thus describing homo-
nuclear diatomic molecules. The parameters controlling the
Lennard-Jones interaction (LJ) are p and e. At the center of
mass of the molecule we locate a point quadrupole. We shall
denote this model as the two center Lennard Jones quadru-
polar model (2CLJQ). The model is described by two reduced
quantities, namely, the reduced bond length L* \ L /p and the
reduced quadrupole moment (Q*)2 which is obtained by :
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The reduced second virial coefficient has beenB2* \ B2/p3
computed as a function of the reduced temperature T * \ T /
(e/k) for a number of linear models. We have considered
models with L* \ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and
with (Q*)2\ 0, 0.5, 1, 1.5, 2, 3, 4. In total, we consider 77
models in this study.

The value of the second virial coefficient of a molecule can
be obtained by evaluating the following expression :

B2\ [
1

2

P
(Sexp([bu)T [ 1)4pr2 dr (5)

Fig. 1 Model used in this work.

where b \ 1/(kT ), r is the distance between the center of mass
of two molecules and Sexp([bu)T is the orientational average
of the Boltzmann factor between two molecules for a Ðxed
value of r. Obviously, the complexity of the calculation of B2for a non-spherical molecule arises in the determination of
Sexp([bu)T. In this work Sexp([bu)T was evaluated for each
value of r using ConroyÏs integration method21 as implement-
ed by Nezbeda et al.22 We used 76 079 relative orientations
for each value of r (which corresponds to M \ 152 158 and
d \ 6 in the Nezbeda et al. paper). The average Sexp([bu)T is
evaluated for 451 di†erent values of r (from r \ 0 up to
r \ 20p). Finally the integral of eqn. (5) is obtained by using
SimpsonÏs integration rule. For each model has been evalu-B2ated for about 200 di†erent temperatures. The calculation of

for a certain model requires ca. 1 h of CPU time on aB2PentiumIII 400 MHz personal computer. Therefore the total
CPU time used in this work constitutes around three days of
CPU time. That clearly illustrates how the determination of

for 2CLJQ falls within the range of a†ordable problemsB2with current computers.

3 Results
Let us start by analyzing the e†ect of the quadrupole moment
on For this purpose we shall compare for two modelsB2 . B2which have the same elongation but having di†erent quadru-
pole moments. In Fig. 2a results are shown for two models
with the same anisotropy (i.e. L* \ 1) but with di†erent quad-
rupole moments (i.e. (Q*)2\ 0, 4). Results are presented as a
function of the reduced temperature, deÐned as T * \ T /(e/k).
As expected, for a given temperature the second virial coeffi-
cient becomes lower for the quadrupolar model. Notice that
although the un-weighted orientational average of the quadru-
polar potential is zero, this is not the case for theSu

QQ
T \ 0,

average of the Boltzmann factor.17 Therefore the presence of
the quadrupole increases the strength of the attractive forces
in the system, which explains the decrease in for a certainB2temperature. Notice that the e†ect of the quadrupole on isB2*very small at high temperatures. In Fig. 2b results are present-
ed for two models with L* \ 0.3 and di†erent quadrupole
moments. Similar conclusions are obtained in this case.

In Fig. 3a the second virial coefficient for (Q*)2\ 0 is
plotted for two values of L*, namely L* \ 0.3 and L* \ 1. In
Fig. 3b similar results are presented for (Q*)2\ 4. As can be
seen, for a certain value of the quadrupole the shorter mol-
ecule yields a lower value of Notice that di†erences inB2*. B2for two di†erent elongation do not disappear at high tem-
peratures.
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Fig. 2 Reduced second virial coefficient as a function ofB2* \B2/p3
the reduced temperature T * \ T /(e/k) for molecules with (Q*)2\ 0
(solid line) and (Q*)2\ 4 (dashed line). (a) Results for L* \ 1 ; (b)
results for L* \ 0.3.

Fig. 3 Reduced second virial coefficient for models of di†erent elon-
gation L* \ 0.3 (solid line) and L* \ 1 (dashed line). (a) When the
reduced quadrupole moment is zero ; (b) when the reduced quadrupo-
le moment is (Q*)2\ 4.

In addition to the second virial coefficient calculations we
have also determined the Boyle temperature, of eachTB ,
model. The Boyle temperature is deÐned as the temperature
where :

B2(T \ TB) \ 0 (6)

In Fig. 4 the Boyle temperature is plotted as a function of L*
for two values of (Q*)2, namely (Q*)2\ 0, 4. We can see that

decreases with L* and increases with (Q*)2. We shouldTBmention that for L* \ 0 and (Q*)2\ 0 we recover the Boyle
temperature of the spherical LJ system. Notice however, that
when L* \ 0 the 2CLJ model becomes a LJ system with four
identical interactions instead of the usual one with just one
interaction. This explains why our curves of tends to fourTB*times the Boyle temperature of the LJ Ñuid when L* tends to
zero. Results of the Boyle temperature for the models con-
sidered in this work are presented in Table 1.

The number of generated data for for the 2CLJQ is ofB2the order of 20 000 points. Therefore, tabular presentation is
out of question. The original data can be obtained from the
authors upon request or directly from the electronic supple-
mentary information (ESI) system of this journal.¤

We have Ðtted our values to an empirical expression. The
proposed expression is as follows :

B2* \ ((d1] d2 L* ] d3 L*2 ] d4 L*3)
] Q*2(c1] c2 L* ] c3 L*2)
] Q*4(c4] c5 L* ] c6 L*2))
] ((d5] d6 L* ] d7 L*2 ] d8 L*3)
] Q*2(c7] c8 L* ] c9 L*2)
] Q*4(c10 ] c11L* ] c12 L*2))/T *

] ((d9] d10 L* ] d11L*2)
] Q2*(c13 ] c14 L* ] c15 L*2)
] Q*4(c16 ] c17 L* ] c18 L*2))/T *2
] ((d12 ] d13 L* ] d14 L*2)
]Q*2(c19] c20 L* ] c21L*2)
] Q*4(c22 ] c23 L* ] c24 L*2))/T *3
] ((d15 ] d16 L* ] d17 L*2)
] Q*2(c25 ] c26 L* ] c27 L*2)
] Q*4(c28 ] c29 L* ] c30 L*2))/T *4
] ((d18 ] d19 L* ] d20 L*2)
] Q*2(c31] c32 L* ] c33 L*2)
] Q*4(c34 ] c35 L* ] c36 L*2))/T *5
] ((d21 ] d22 L* ] d23 L*2)
] Q*2(c37 ] c38 L* ] c39 L*2)
] Q*4(c40 ] c41L* ] c42 L*2))/T *6 (7)

As can be seen in our trial equation for the Ðt, the reduced
second virial coefficient is Ðtted as a polynomial of the
reduced inverse temperature23,24 1/T *. We also tried a
polynomial25 of but the results were not signiÐcantly1/J(T *)
better. The coefficients of the expansion are Ðtted to a quadra-
tic polynomial in (Q*)2. The coefficients labeled as were Ðrstd

iobtained by Ðtting the results for the non-polar models. Once
obtained, the coefficients were obtained by including thec

idata for the quadrupolar models. For each model, the range
of reduced temperatures considered is chosen as follows. The
minimum temperature corresponds to the temperatureT min*
for which and the maximum temperature cor-B2* ^ [55 T max*
responds to The parameters obtained from the Ðt are pre-T B*.
sented in Table 2. The Ðt of eqn. (7) should not be used
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Fig. 4 Reduced Boyle temperature as a function of the bondT B*length for (Q*)2\ 0 (solid line) and (Q*)2\ 4 (dashed line).

outside of the range for which it was designed, which corre-
sponds to L* \ (0.2, 1) (that covers the typical range of lengths
for real diatomic molecules), (Q*)2\ (0, 4), and T \ (Tmin ,

The error of the Ðt is :Tmax).

;112637 oB2* [ B2(fitted)* o

Npoints
\ 0.08 (8)

We have also separately Ðtted the results for L* \ 0 (i.e. for
quadrupolar spherical molecules) after having found that a
direct Ðt of the lengths L* \ (0, 1) substantially increases the
error in the Ðtted points. We have Ðtted of the sphericalB2*molecule to the following expression :

B2* \

(d1 ] c1Q*2 ] c2 Q*4] c3Q*6] c4Q*8)

] (d2 ] c5 Q*2 ] c6 Q*4] c7Q*6] c8Q*8)/T *

] (d3 ] c9 Q*2 ] c10 Q*4 ] c11Q*6] c12Q*8)/T *2

] (d4 ] c13 Q*2] c14Q*4] c15 Q*6 ] c16Q*8)/T *3

] (d5 ] c17 Q*2] c18Q*4] c19 Q*6 ] c20Q*8)/T *4

] (d6 ] c21Q*2] c22 Q*4] c23Q*6 ] c24Q*8)/T *5

] (d7 ] c25 Q*2] c26Q*4] c27 Q*6 ] c28Q*8)/T *6 (9)

The parameters of the Ðt of for spherical quadrupolarB2*models are presented in Table 3. The error of the Ðt for the
spherical quadrupolar molecule is :

;1846 oB2* [ B2(fitted)* o

Npoints
\ 0.02 (10)

We shall now illustrate how the results for of 2CLJQ mol-B2ecules can be applied to real models. Let us take as anCO2

Table 1 Reduced Boyle temperature of 2CLJQT B* \ TB/(e/k)
models for several reduced bond lengths and quadrupoles

Q*2

L* 0 0.5 1.0 1.5 2 3 4

0.0 3.418 3.513 3.780 4.187 4.705 5.999 7.563
0.1 12.827 12.849 12.913 13.019 13.165 13.570 14.114
0.2 11.044 11.060 11.110 11.191 11.304 11.618 12.042
0.3 9.269 9.283 9.321 9.384 9.471 9.713 10.039
0.4 7.822 7.835 7.867 7.919 7.989 8.184 8.445
0.5 6.705 6.719 6.749 6.795 6.856 7.022 7.242
0.6 5.852 5.868 5.898 5.942 5.999 6.148 6.344
0.7 5.196 5.216 5.248 5.292 5.347 5.490 5.672
0.8 4.688 4.712 4.747 4.793 4.849 4.991 5.168
0.9 4.290 4.319 4.358 4.407 4.467 4.612 4.792
1.0 3.976 4.009 4.053 4.108 4.172 4.328 4.518

Table 2 Parameters of the Ðt for the second virial virial coefficient of
2CLJQ models (see eqn. (7) of the main text.) The range where this Ðt
is valid corresponds to L* \ (0.2È1), (Q*)2\ (0È4), andB2* [ [55
T \TB

d1\ 1.898 752 869 394 235
d2\[2.466 373 474 333 950 7
d3\ 12.293 229 090 338 604
d4\[9.673 895 464 383 694 1
d5\[21.149 276 727 890 463
d6\ 28.904 989 450 954 062
d7\[46.051 630 659 710 924
d8\ 41.087 573 327 607 871
d9\[43.988 684 129 240 617

d10\ 70.285 714 711 082 861
d11\[82.536 277 918 044 888
d12\ 13.144 173 894 436 049
d13\ 29.103 500 294 603 936
d14\ 11.617 216 129 160 731
d15\[40.670 962 084 910 947
d16\ 6.824 581 677 365 086 9
d17\ 0.894 477 026 440 632 87
d18\[15.292 445 640 454 407
d19\ 56.283 981 168 719 741
d20\[35.166 226 201 495 178
d21\ 16.766 523 131 527 563
d22\[40.554 245 351 098 778
d23\ 23.345 122 678 621 983
c1\ 0.245 883 198 304 388 01
c2\[0.966 492 720 502 574 95
c3\ 0.910 518 182 022 073 46
c4\[0.132 645 233 265 985 01
c5\ 0.561 523 591 326 491 77
c6\[0.747 773 848 267 097 36
c7\[2.528 884 568 905 822 6
c8\ 8.266 395 658 068 102 4
c9\[7.162 937 621 580 757 9

c10\ 1.321 190 472 763 870 4
c11\[4.177 144 662 831 516 1
c12\ 6.271 011 798 369 444
c13\ 8.785 276 382 966 827 7
c14\[19.487 038 352 378 768
c15\ 12.079 315 006 562 526
c16\[7.033 983 804 895 499 7
c17\ 9.665 192 819 141 443 8
c18\[16.541 412 215 774 777
c19\[11.244 081 313 925 605
c20\ 9.450 825 035 927 826 1
c21\ 2.192 515 765 405 800 7
c22\ 12.643 160 083 087 501
c23\ 7.145 011 135 708 631 2
c24\ 5.605 752 402 850 320 9
c25\ 5.552 709 239 457 886 5
c26\ 3.267 348 045 863 379
c27\[10.397 634 077 097 413
c28\[29.325 145 207 901 176
c29\ 9.826 219 509 798 299 6
c30\[4.762 111 811 460 831
c31\ 7.260 212 703 708 435 6
c32\ 3.670 369 021 231 411 3
c33\[8.365 525 722 288 987 6
c34\ 5.302 898 011 918 515 8
c35\ 14.048 340 476 474 802
c36\[11.825 790 877 347 865
c37\[7.377 225 658 874 543 5
c38\[0.637 429 271 929 039 64
c39\ 6.493 822 759 856 182 2
c40\ 9.270 272 567 768 373 1
c41\[23.536 291 394 452 547
c42\ 14.402 791 576 965 646

example. The second virial coefficient of has been mea-CO2sured experimentally for a number of temperatures.26 Let us
now try to describe the experimental data with the 2CLJQ
model. One possibility is to Ðnd the values of L*, (Q*)2, p, and
e that provide the best agreement with the experimental
results. One drawback of this method is that the parameters
obtained in this way lack any physical meaning. It seems more
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Table 3 Parameters of the Ðt (see eqn. (9) of the main text) for the
second virial virial coefficient of the spherical LJ quadrupolar model.
The range where this Ðt is valid corresponds to L* \ 0, (Q*)2\ (0È3),

andB2* [ [40 T \ TB

d1\ 1.533 868 683 339 934 9
d2\[4.568 695 590 217 973 1
d3\[2.317 775 851 010 862 4
d4\ 0.192 414 321 560 942 35
d5\[0.123 543 159 175 493 81
d6\[3.639 064 757 846 546 12] 10~2
d7\ 3.371 662 535 483 408 15] 10~3
c1\ 0.225 541 268 987 440 87
c2\[0.162 585 189 859 545 54
c3\[0.105 490 411 759 388 86
c4\ 2.665 934 668 495 285 53] 10~2
c5\[0.686 220 139 455 147 37
c6\[2.184 890 959 443 585 2
c7\ 2.711 569 034 953 109 6
c8\[0.396 591 794 574 943 04
c9\[1.821 823 061 439 928 4

c10\ 14.246 453 361 099 661
c11\[10.933 746 864 066 601
c12\ 0.685 138 705 436 027 4
c13\ 5.512 334 219 305 183
c14\[24.945 763 515 067 306
c15\ 5.423 975 677 573 869 4
c16\ 3.021 153 165 417 908 2
c17\[0.366 181 500 998 445 6
c18\[0.462 721 898 042 653 73
c19\ 18.796 536 774 318 561
c20\[6.583 773 646 109 092 3
c21\ 2.605 438 882 170 298 5
c22\[9.704 249 155 834 423 5
c23\ 7.255 901 241 057 437 7
c24\[6.283 868 083 142 980 5
c25\[3.278 343 494 705 186 2
c26\ 12.335 695 801 686 716
c27\[14.002 835 402 583 143
c28\ 5.789 219 550 064 681 9

appropriate to derive the value of some of the parameters
from physical considerations. For instance, the bond length
and molecular volume of many real molecules are well known.
Therefore, our suggestion is to obtain L* and p from the
molecular volume and the bond length (in the case of a
diatomic molecule). Thus, once the bond length and molecular
volume are known, this will determine L* and p by noting
that the bond length L and molecular volume of aVmdiatomic molecule are given by :

L \ L*p (11)

Vm \
p

6
p3(1] 1.5L* [ 1/2(L*)3) (12)

In the case of a triatomic molecule as it is not so obviousCO2how to map the molecule into a 2CLJQ model. We should
mention that has been described by a 2CLJQ model pre-CO2viously in a number of papers.9,10,14 Also, has beenCO2described succesfully by using the Kihara quadrupolar
model.27 The reduced bond length used commonly for inCO2

Table 4 Parameters used to describe real molecules with the 2CLJQ
model

Substance L/A p/A (e/k)/K Q/(10~26 esu)

Xe 0 4.099 224.5 0
CO2 2.3572 2.946 123.0 [4.5
CO2 2.3572 2.946 161.10 0
Ethane 1.54 3.825 103.31 0
Ethylene 1.34 3.79 83.85 4.0

a number of models is close to L* \ 0.80, the typical width of
the molecule28,29 being about p \ 2.95 These valuesA� .
provide a good description of the liquid phase properties, and
as such they can be taken as being reasonable. How do we
determine the other two parameters, namely, e and (Q*)2? For
a number of substances the quadrupole moment has been
determined experimentally. See for instance the excellent
review by Gray and Gubbins for extensive tables of quadru-
pole moments.17 It should be mentioned however, that the
typical uncertainty of experimental values is quite large and
can be of up to 40%. Once the experimental value of the
quadrupole moment, is known, the reduced quadrupoleQexp ,
is obtained from the formula :

(Q*) \
85.11025Qexp
J(e/k)(p/A)5

(13)

where is given in units of 10~26 esu (which is the stan-Qexpdard way of reporting the experimental values). For theCO2experimental17,30 value of the quadrupole moment is Qexp\
(in 10~26 esu units) although some recent measurements[4.5

suggest the somewhat lower value Once L*, pQexp \ [4.0.31
and are derived we proceed as follows. A value for e isQexpchosen. By using this value of e the reduced quadrupole
moment is obtained from eqn. (13). The value of is thenB2computed for this model at T \ 273.15 K and is compared
with the experimental value. If they do not match then
another value of e is chosen and is recalculated. This isB2repeated until for a certain choice of e the calculated and the
experimental value of at T \ 273.15 K match. In Table 4B2the parameters used to describe are shown. In Fig. 5CO2 B2for is shown. Symbols correspond to experimental resultsCO2and the solid line represents the results obtained in this work
using the model described in Table 4. As can be seen, the
agreement between experimental and theoretical predictions is
rather good. Let us now illustrate how the inclusion of the
quadrupole moment is essential to the description forB2For that purpose we shall use a second model whichCO2 .
has the same value of L* and p but with (Q*)2\ 0. The value
of e for this non-polar model is again obtained by Ðtting atB2T \ 273.15 K. The value of e for this non-polar model is given
in Table 4. Notice that when the quadrupole is not included a
larger value of e is needed to reproduce the second virial coef-
Ðcient at T \ 273.15 K. Therefore we forced both models, the
quadrupolar and the non-polar models to reproduce ofB2at T \ 273.15 K. In Fig. 5 the theoretical predictions forCO2the non-polar model are shown as a dashed line. As can be
seen, the non-polar model does not provide such a good

Fig. 5 Second virial coefficient of as obtained from experimentCO2(symbols) and from the calculations of this work for the 2CLJQ
model. The parameters used for the 2CLJQ are those given in Table
4. Results for (Q*)2\ 0 (dashed line), results for the quadrupolar
model of described in Table 4 (i.e. (Q*)2\ 5.47) (solid line).CO2
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description of the experimental results. The conclusion that we
come to by looking at Fig. 5 is that the inclusion of the quad-
rupole moment signiÐcantly improves the description of the
second virial coefficient of a molecule such as carbon dioxide.
When attractive dispersion forces from the 2CLJQ are
replaced by a more sophisticated version obtained from
quantum mechanical calculations the agreement between
experiment and calculations can even be quantitative.32 This
is not only true for gas phase properties. It is well known that
the inclusion of the quadrupole greatly improves the descrip-
tion of liquid phase properties, and it is absolutely essential19
for the description of the solid phase of (without theCO2quadrupole it is impossible to stabilize the experimental solid
phases of CO2).Although we have presented results for the same pro-CO2cedure can be applied to other substances. We hope the
results provided in this work (along with the Ðts) encourage
further application of the 2CLJQ model to the description of

to real substances.B2All the results presented so far correspond to pure Ñuids.
However, the inclusion of the quadrupole can be important in
order to understand some properties of mixtures. The second
virial coefficient of a binary mixture is given by the following
expression :

B2\ x12B211] 2x1x2 B212] x22B222 (14)

where is the second virial coefficient of component i, andB2iiis the crossed second virial coefficient between componentB2iji and component j. The crossed second virial coefficient
between Xe and several molecules (i.e. ethane andCO2 ,
ethylene) have recently been measured experimentally.33,34
We shall try to describe the experimental values. For that
purpose the parameters of the 2CLJQ model were obtained
for the pure substances by imposing values for L*, p and Qexpand choosing e to reproduce the experimental value of atB2T \ 273.15 K. The values of p and L* for Xe, ethane and
ethylene were taken from parameters that correctly describe
the liquid phase4,35h37 and the reduced quadrupole is
obtained by using the experimental value of the quadrupole
moment.17

The parameters obtained are presented in Table 4. In Table
5 the second virial coefficient at T \ 273.15 K as obtained
from experiment and from our Ðt are shown. Obviously the
agreement is excellent since we forced e to reproduce the
experimental results. Once the parameters for the pure sub-
stances have been determined we shall assume that the param-
eters for the cross interaction in the mixture are given by the
LorenzÈBerthelot combination rules :

e
ij
\ (e

ii
e
jj
)1@2 (15)

p
ij
\ (p

ii
] p

jj
)/2 (16)

Sometimes additional parameters are included to account for
possible deviations from the LorentzÈBerthelot rules but here
we shall assume that they are valid. In eqn. (1) we replace
(Q*)2 by where and are the reduced quadru-Q1*Q2* (Q1)* (Q2)*pole moments of molecules 1 and 2, respectively. In Table 6

Table 5 Second virial coefficient at T \ 273.15 K in cm3 mol~1 as
obtained from experiment and from the calculations of this work for
the 2CLJQ model with the parameters of Table 4. The value of e
presented in Table 4 was chosen to reproduce the experimental value
at this temperature

Substance Experimental Calculated

Xe [155.7 [155.6
CO2 [150.7 [150.6
Ethane [222.9 [222.7
Ethylene [168.8 [168.6

Table 6 Crossed second virial coefficient at T \ 273.15 K inB12cm3 mol~1 as obtained from experiment and from the calculations of
this work for the 2CLJQ model with the parameters of Table 3 and
the LorentzÈBerthelot rules for the crossed interaction

Mixture Experimental Calculated

XeÈCO2 [126.4 [129.4
XeÈEthane [187.2 [187.6
XeÈEthylene [158.4 [158.8

the crossed virial coefficients obtained from experiment and
from the calculations are presented. The agreement between
experiment and our calculations is quite good. Notice that
although we have Ðtted the results for the pure components it
is not obvious that the calculations should be able to accu-
rately reproduce the crossed virial coefficient.

Let us analyze in more detail the results for the Xe] CO2mixture. As can be seen in Table 5, for T \ 273.15 K the
values of for Xe and are [156 cm3 mol~1 and [151B2 CO2cm3 mol~1, respectively. One would expect that thena•� vely
crossed virial coefficient will fall between those two values
(this is quite often found experimentally for many other
systems). However, the experimental value of for thisB12mixture is cm3 mol~1. How does one explainB12 \ [126
such a large deviation? The calculations reproduce this trend
since they yield cm3 mol~1, which is in fairB12 \ [129
agreement with the experimental result. The calculations
provide the answer to this puzzling feature. The value of

for this mixture arises from the fact that there is noB12quadrupoleÈquadrupole interaction between Xe and CO2since the quadrupole moment of a spherical molecule, such as
Xe, is zero. Since the quadrupolar interaction is missing the
interaction between these two molecules is less attractive and
that explains the high value of Basically the value ofB12 . B12is given by the dispersion interactions between Xe and CO2 .
Therefore the presence or absence of quadrupole moment in
one or both of the two molecules of a mixture can be very
important in correctly describing the crossed virial coeffi-
cient.38 The high value of also suggests low miscibility forB12Xe and in the liquid phase. We should mention that inCO2this study we have not included polarizability within the
model. The fact that spherical molecules can be polarized by a
polar molecule has not been considered here although, as
shown in a recent work, the e†ect may be important especially
for the case of a spherical particle interacting with a dipolar
one.39

The results given in Table 6 show that the second virial
coefficient between a spherical molecule and a molecule with a
strong quadrupole moment is signiÐcantly higher than one
should expect. The reason for this is that the polar interaction
does not appear in the crossed interaction.

We shall Ðnish by evaluating some other properties of inter-
est for the mixture. The JouleÈThomson coef-ethylene ] CO2Ðcient of a pure Ñuid is usually obtained from the following
relationship :

0/\ B2 [ T
dB2
dT

(17)

The coefficient for the mixture is then obtained0/mixturefrom:

0/mixture\ x12 0/1 ] x22 0/2 ] 2x1x2 0/12 (18)

where are the values of the JouleÈThomson coeffi-0/1, 0/2cient for components one and two, respectively, and is the0/12value of the JouleÈThomson coefficient for the cross inter-
action. In Fig. 6 results are presented for the JouleÈThomson
coefficient for Symbols correspond toethylene ] CO2 .40
experimental results whereas the solid line corresponds to the
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Fig. 6 JouleÈThomson coefficient for the mixture atethyleneÈCO2T \ 298.15 K as obtained from experiment40 (Ðlled symbols) and for
the 2CLJQ model with the parameters presented in Table 4. The open
symbol for pure has been evaluated by using eqn. (17) and theCO2most recent experimental data available for ofB2 CO2 .

calculations of this work. As can be seen the calculations show
fair agreement with experiment. It should be noted that for
pure the experimental value of is probably too high.CO2 0/2In fact, re-evaluating with the best data currently avail-0/2able for the second virial coefficient of yields the pointCO2denoted by the open circle of Fig. 6. This example illustrates
that not only virial coefficients but also other related proper-
ties, such as the JouleÈThomson coefficient, can be obtained
from the calculations.

4 Conclusions
In this paper the second virial coefficient has been calculated
for a number of two-center LJ models which have a point
quadrupole. Elongations in the range L* \ (0È1), and quadru-
pole moments in the range (Q*)2\ (0È4) were considered. In
total, 77 di†erent models have been analyzed. For each model

has been computed for around 200 di†erent temperatures.B2The experimental results of were Ðtted to an empiricalB2expression. The Boyle temperature was also computed for
those 77 di†erent models. The source data as well as the
programs of the Ðt are available upon request

or can be obtained directly from(cvega=eucmos.sim.ucm.es)
the electronic supplementary information (ESI) system of this
journal.¤

The presence of the quadrupole moment is seen to reduce
the second virial coefficient with respect to that of the non-
polar model. The inclusion of a quadrupole serves to increase
the value of the Boyle temperature.

It has also been shown how the introduction of the quadru-
pole signiÐcantly improves the description of the second virial
coefficient for molecules which have a large quadrupole
moment, as is the case for carbon dioxide. We hope the data
obtained in this work can be useful for workers trying to
describe experimental results of of real substances with theB22CLJQ model. Even those workers looking for potential
parameters to describe liquid properties can beneÐt from these
kinds of studies. In fact, they could proceed in a two step
approach in the search of the potential parameters set. They
can Ðrst determine a set of potential parameters describing the
gas phase (i.e. the second virial coefficient) and then proceed
to a reÐnement of the parameters by using computer simula-
tions in the liquid phase. It should be stated that parameters
describing gas phase properties do not describe particularly
well the liquid phase properties and vice versa. One should
bear in mind that three body forces play an important role in
determining liquid phase properties whereas they do not
appear in the gas phase. Therefore, potential parameters

determined for the liquid phase can be considered as e†ective
potential parameters rather than the true pair potential
parameters.

We have also shown that the quadrupolar interactions play
an important role in understanding the crossed second virial
coefficient between spherical and polar molecules. In par-B12ticular, we have shown that the anomalous low value of B12for mixtures as Xe and is due to the absence of quadru-CO2polar energy in the pair interaction.

Work on the determination of the third virial coefficient for
2CLJQ is in progress. Also, to the best of our knowledge there
has been no calculation of the third virial coefficient for the
non-polar 2CLJ model. Furthermore, a study of the e†ect of a
dipole moment on the second virial coefficient would be of
much interest.41
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