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Isotropic-nematic phase transition: Influence of intramolecular flexibility
using a fused hard sphere model
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The role of flexibility on the liquid crystal isotropic-nematic phase transition has been studied by means of
Monte Carlo simulation. We present equations of state for the isotropic-nematic branches and, in the isotropic
phase, numerically calculated values for the virial coeffici@ys B;, andB,. We have studied two models:

11 hard sphere monomers fused in a linear configuration with a reduced bond length of 0.6 and a 15-monomer
version of this model in which monomers at one end of the chain become flexible. We have observed
spontaneous nematic liquid crystal formation for both of the fully rigid models, and also for models with up to
six flexible monomers in the tail. We conclude that molecular flexibility has a strongly destabilizing effect on
the nematic phase. This is probably due to the decrease in shape anisotropy that flexible tails allow.
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[. INTRODUCTION thermodynamic properties for any given mesogenic com-
pound.

It was Onsagef1] in 1949, who demonstrated that one The(e are several Way's-i'n which fle>'<ibility can be intro-
could predict an isotropic-nematic transition in a systemduced into a model. Flexibility may be introduced homoge-
whose molecules are modeled by long “hard” rods, or in necjtqsly,l typlc?IIy ?]modell V;’.'” clon5|;s_t of a number of gedc_)—
other words, a model that consists only of excluded volum({“e fic elements whose relative localions can vary according
. . L . to some function. Models of this type have been studied by
interactions. He showed that for infinitely long rods the IS0-\vi

. . " . Ison [18-2Q, Dijkstra and Frenkel[21], Yethiraj and
tropic nematic transition occurred at vanishingly small de”'Fynewever[ZZ] and Fynewever and Yethir&p3], among

[2], the molecular dynamics simulation, and the developmeninodels is that the introduction of flexibility destabilizes the
of fast computing machines, it became possible to study aematic phase with respect to an equivalent fully rigid
much greater range of models. In 1985 Frenkel and Muldemodel. In the case of a completely flexible model, such as
[3] demonstrated the formation of a stable nematic phase fdhat of the “pearl necklace” modef24—-24 (i.e., a fully

a system of hard ellipsoids of revolution using Monte Carloflexible tangent hard sphere mogeto liquid crystal phase
simulations. Later, in 1988, Frenkpt] showed the forma- formation is observed. The introduction of flexibility in this

tion of a stable smectic phase for the spherocylinder systenf@Ner provides a good starting point for studies of poly-

thus revealing the enormous potential of computer simula[ﬁeric liquid crystals, which are composed of long chains that

tion in the study of the rich phase behavior of complex ﬂu_have an overall degree of flexibilig27].

) ) Smaller mesogenic molecules are frequently found to be
ids. The last 15 years have played host to a wide range qfomposed of a rigid coréfor example, a linear series of

studies, both theoretical and by means of computer simulgsenzene ringswhich has flexible groupéfor example, alkyl
tion, for a great variety of models. For example, hard modelghaing attached at either one or both ends of the core sec-
that have been investigated include spherocylindBrs7],  tion. In this case one can make a clear distinction between a
hard ellipsoids[3,8], linear chains of tangentially bonded rigid section and a flexible section or sections. In this paper
hard spherefL THS) [9,10], and the fused hard sphere chain we wish to examine the effect that the addition and the in-
model (FHSQO [11-13. Liquid crystal formation in systems troduction of a flexible tail has on the isotropic-nematic
composed of geometric hard bodies is well documented anghase transition. With this goal in mind there are a number
we refer the reader to the following revieWs4—16 of possible routes to address this problem. One possibility is
Molecules that form liquid crystal phasésspecially ther-  to use a realistic model. Examples of studies of this nature
motropic nematic phasggarely consist solely of a rigid can be found in the literatuf@8—-32. However, the addition
core; they are usually flanked by flexible units either at oneof soft potentials, bond bending, bond stretching, and possi-
or both ends of the corgl7]. The study of liquid crystal bly torsional potentials, increases the complexity of the
formation in models that contain flexible units may be con-model dramatically. This increase in complexity is reflected
sidered as a logical progression in the route from the invesin the considerable computational resources required in the
tigation of the mesophasic behavior of hard geometric bodiestudy of such models. In this paper we have chosen to study
to the point where one can accurately compute structural ana much simpler model which, although more “ideal,” does
allow us to study more Hamiltonians than the simulation of a
realistic model would permit. This approach has already
*Present address: Institut fur Physik, Johannes Gutenbergbeen taken by other authof83—35. The work of Duijn-
Universitat Mainz, WA31, D-55099, Mainz, Germany. eveldt and Allen is particularly interestin®3]. These au-
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thors have used a hard spherocylinder as the rigid core an g = 5
an “ideal” tail (made up by points which have zero volume w7
and which can not overlap with the spherocylindas the
flexible unit. They have considered the role of adding the G &
flexible tail and concluded that the smectic phase is stabi- | , 3 4 5 6 7 8 o9 10
lized by the addition of the flexible tail. One limitation of
their model is the ideal character of the tail since it has zero FIG. 1. Model used in this work. Snapshot of a1 RFFFHS
volume, thus there are no tail-to-tail interactions. It is not™Melecule in the gas phase.
clear whether their conclusions hold equally well when the
tails become nonideal. same type of hard sphere monomers, thus the model has an
In the early 1980s Wertheim proposed a theory for assolhherent symmetry between the rigid and the flexible part.
ciating fluids. When the association between sites becomeinother attractive feature is that the model is susceptible to a
infinitely strong, chainlike fluids are formed. Starting with theoretical treatment based on an extension of Wertheim's
the equation of statéEOS and structural properties of the work to nematic phases z?md to molecules that combine rigid
reference system formed by hard spheres, one can determifgd flexible monomer units. .
the EOS of tangent hard sphere chains by using a perturba- The format of this paper is as follows: in Sec. Il we de-
tive approach. This is usually called first-order thermody-Scribe the model in more detail as well as details of the
namic perturbation theory or “TPT1” theory. This theory Monte Carlo(MC)_ simulations. In Sec. Ill we present the
was proposed simultaneously by Werthe[®36] and by ~ Main re_sults of this Wprk for the |sotr_0p|c phase. In _Sec. v
Chapmannet al. [37]. The TPT1 EOS has been extendedﬂ_‘? main results of this wor_k for the isotropic-nematic tran-
[38] to the case where a certain degree of overlap is allowedition Will be presented. Finally our conclusions are pre-
between contiguous monomers of the chéia., when the Sented in Sec. V.
reduced bond length is less than TPT1 provides us with a
good EOS for chains formed from hard spheres. A good EOS Il. MODEL AND COMPUTATIONAL TECHNIQUE
for hard sphere chains is important as studies of the
isotropic-nematic transitiofL0,9] rely on the isotropic EOS. ~ The molecular model used in this work consists nof
However, it must be mentioned that according to Wertheim'digid hard spheregor monomers followed by m; flexible
TPT1 the EOS of the chains does not depend on chemic#lard spheregsor monomers Each of the monomers are of
details such as bond angle or the presence or absence d@ipmetero. The total number of hard spheres that constitute
flexibility. This surprising result has been tested by comparithe molecule is denoted as and is given bym=m, + m.
son with simulation results for short chains, and it has indeed he relative configuration of the rigid section remains unal-
been found that the EOS for short tangent hard sphere chaiitgred during the simulation runs. Tie; flexible monomers
is hardly affected by molecular flexibilit}39]. are subject to Monte Carlo configurational bias. The bond
However, one may suspect that this finding cannot holdength between monomers is setlat 0.60 thus giving a
true for long chains; fully flexible chains do not form liquid reduced bond length*=L/o of 0.6. The interaction be-
crystal phases whereas fully rigid chains form mesophasesween monomers in different molecules or between non-
Therefore, for long chains differences between rigid andoonded monomers of the same molecule is of the hard sphere
flexible models must indeed appear. type [40]. There are no bond bending or torsional potentials
In this paper we shall study the liquid crystal formation of between the monomers that form the flexible tail. The mono-
molecules formed by chains of hard spheres by means dhers in the tail may adopt any configuration so long as they
computer simulation. The choice of the model is motivatedare free of intramolecular or intermolecular overlap. In prac-
by the great impact that Wertheim’s work has had on literatice the constraint in the bond length itd =0.6 makes de-
ture concerning flexible molecules. We wish to address twwiations greater than 67.2° impossible for a certain monomer
issues concerning flexibility. The first issue is the addition ofwith respect to the vector formed by the two previous mono-
a flexible tail. We do this by comparing a model that consistgmers of the chain. Overlap checks are made between all non-
of a fully rigid linear chain of 11 monomers with a similar bonded pairs of atoms, both intermolecular and intramolecu-
model that has a flexible tail of four monomer units. Noticelar, using the minimum image convention. By doing this,
that our tail is nonideal, a difference with respect to the workeven for intramolecular interactions, we avoid the possibility
of Duijneveldt and Aller{33]. The monomers of the flexible of overlap between a given molecule and its own image.
tail interact with each other through a hard sphere potentialSince all the interactions in the model are “hard” interac-
Second, we shall study the effect of introducing flexibility. tions the temperature becomes a redundant variable and the
For that purpose we shall start with a fully rigid linear chain properties of the system depend only on the density. The
of 15 monomers and then study the effect that making monomodels used in this work will be denoted as rigid fully flex-
mers at one end of the chain fully flexible has on the phaséble fused hard sphere moddRFFFHS. The model is de-
diagram. Therefore when discussing the role of flexibility onscribed in more detail in Fig. 1 for the casg=10, m;=5
phase diagrams we shall make a distinction between “addtor more succinctly we shall adopt the notation+B).
ing” flexible tails, or “introducing” flexible tails. The We shall now describe the models studied in this work.
model considered in this work has the appealing feature thdgirst, two fully rigid models have been considered. The
the rigid and flexible parts of the molecule are formed by thedength to breadth ratios are 9.4 for the+1® model and 7.0
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for the 114+0 model. Whittle and Mastefd 2] found nematic  ecules concerns the formation of smectic phases. To study
phases form, models consisting of eight monomers with smectic phases much larger systems are required, thus allow-
L*=0.5 andL* =0.6. Thus we felt certain that the choice of ing the formation of several smectic layers. For smectic and
molecules containing 11 and 15 monomer units would prosolid phases nonisotroplpT simulations should be used.
vide us with a nematic phases which we could study. Thé/loreover, when studying smectic and solid phases by means
choice of the dimensions for the, +m;=15 model were ©Of computer simulation it is a good idea to have the initial
made in a loose relation to the dimensions of the well knowreonfigurations defect fre¢33]. On compressing nematic
mesogen 4-cyano.8-alkyl-biphenyl(8CB). phases it is possible to observe the spontaneous formation of
A fused model has been chosen for two main reasongmectic phases; however, the smectic phases obtained by
First, fusing the spheres increases the convexity of the modé&ompression quite often contain defectsr example, mol-
with respect to the tangent hard sphere model. Williamsorgcules often become trapped between layers, lying perpen-
and Jacksof9] have highlighted the possibility of molecules dicular to the layer normal In our simulations we observe
that have a high degree of nonconvexity “locking” together the formation of smectic phases by compression. We shall
in the high density fluid, forming long-lived metastable indicate that when reporting the simulation results. Whereas
glassy states. We hope that this effect is reduced due to tHg€ spontaneous formation of smectic phases from the nem-
more convex nature of our model. Second, the fused modéitic phase is an interesting feature we recommend caution
allows for a more gradual introduction of flexibility than When analyzing the actual values of the densities at which
would be the case with a tangent hard sphere model. this transition appears. Those densities will certainly be af-
To analyze the effect of the addition of a flexible tail to a fected when larger systems are considered, and when defect-
rigid model we then studied the 31 model. By comparison free smectic configurations are used.

of the 11+0 model with the 134 we are able to study the We would like to stress at this point that the main goal of
effect of adding a flexible tail to a rigid core. this work is to study the role of flexible tails on the isotropic-

Next we have considered the introduction of flexibility. Nematic transition and our results concerning the nematic-

Starting from the 13-0 model we have introduced a flexible SMectic transition are just preliminary for the reasons de-

tail while maintaining the total number of monomers of the scribed above.

chain constant an=15. We have studied the 2, 11+4, During the simulations the nematic order parameter

10+5, 9+6 and 87 models. We then compare the results(Which is zero for an isotropic fluid and one for a perfectly

for these models with the 50 case. This allows us to see aligned systemwas continuously monitored. This was done

the effect that increasing the region of flexibility within the by first calculating a director vect¢d2]

molecule has while keeping the number of monomers con-

stant. Q
We have performed the simulations using configurational ap

bias Monte Carlo in theNpT ensemble. The shape of the

simulation box was either cubic or orthorhombic. The num-whereQ is a second rank tensc&j, is a unit vector a|0ng the

ber of molecules used in all the cases W&s 108 although  |ong axis (defined as the eigenvector associated with the

for the 15+0 model simulations were also performed for |argest eigenvalue of the inertia tensof the molecule, and

N=500 to test for system size dependence. Isotropic scaling,, ; is the Kronecker delta. Diagonalization of this tensor

of the box dimensins was used throughout the simulatiojives three eigenvalues, , Ao, and\_, andn is the eigen-

runs except for the 150 500 molecule system where aniso- vector associated with the largest eigenvalug). From this

tropic box scaling was used. Compression of the 108 moldirector vector the nematic order parameter is calculated

ecule system is easier than compression of the 500 molecuffom [43]

system due to the higher probability of generating a configu-

ration for which a trial volume move would be acceptable. 3 1

The types of moves performed on the molecules include SZZM:<P2(”'e)>:<P2(C°S‘9)>:<§C°529_ §>'

translations and rotations. The internal degrees of freedom of )

the flexible tails were sampled by using the configurational

bias algorithm[41]. A cycle includes a trial move per par- whereS, is known as the uniaxial order parameter. HEge

ticle (translation 40%, rotation 40%, and configurational biasis the second-order Legendre polynomilis the angle be-

of the flexible tail 20% plus a trial change of volume. A tween a molecular axes and the direatgrand the angular

typical run comprised of approximately>210° cycles for  brackets indicate an ensemble average. As well, the nematic

equilibration followed by X 10°—5x 10° cycles for produc-  order parameter snapshots of simulation configurations were

tion averages. The longer runs were performed for statalso taken for use as an aid to phase identification.

points that were seen to be near a phase transition. The simulations were performed as follows: for each
Our study of the 150 model with systems of both 108 model we started from a very low density state. The initial

and 500 molecules revealed no significant finite size effectsconfiguration was that of the face-centered-cubic structure

We believe that the main conclusions of this work concern{40], thus the initial nematic order parameter was zero and

ing isotropic-nematic transitions would not be affected byno preferential direction to the molecules was atrtificially in-

using a larger system. troduced. Within a few steps the solid melts and is trans-
One drawback of studying systems of jdét108 mol-  formed into a low density isotropic fluid. We then proceed to

1% P - 1
N 2 | 2808~ 0] @h=xyz, (D
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TABLE I. Calculated virial coefficients for the isotropic phase.

moom B B B} BY/(B})?  BL/(B})?
15 0 12.906-0.002 55.8590.03 —9.058+0.26 0.335 —0.0042
14 1 12.854-0.003 56.161+0.03 —2.842+0.214 0.340 —0.0013
13 2 12.7370.008 56.5040.02 5.4610.14 0.348 0.0026
12 3 12.602-0.006 56.805:0.08 14.594-0.31 0.358 0.0073
11 4 12.469%0.015 57.2080.03 23.285:0.86 0.368 0.0120
10 5 12.239-0.008 57.5120.14 36.567 0.60 0.384 0.0199
9 6 12.115-0.019 57.9460.12 46.061%0.91 0.395 0.0259
8 7 11.879-0.003 58.20%#0.13 60.5481.02 0.412 0.0361

compress this fluid by increasing the pressure. The last corMonte Carlo passes. Everyxl10* passes the instantaneous
figuration from a certain pressure was used as an initial coreonfiguration was written to a file thus obtaining 4000 con-
figuration for the next, higher, pressure. States for which thdigurations. From this set of 4000 configurations four differ-
nematic order parameter was greater than 0.4 were classifieht conformations were selected randomly and the virial co-
as being nematic. All states obtained from compression of afficients were calculated for those selected conformers. This
low density isotropic fluid will be denoted as compressionis repeated 1600 times and the average value of the virial

states. coefficients is calculated.
In addition to compression states, expansion runs were
also performed. Let us briefly describe how the expansion . RESULTS FOR THE ISOTROPIC PHASE

runs were undertaken. The system most likely to spontane-

ously form a nematic phase from the isotropic fluid was the In this section results will be reported for the isotropic
15+0 model. Once a h|gh density nematic phase was Obphase. We shall divide the results into two SeCtionS; the first
tained for the 15-0 model this configuration was used as theSection corresponds to the low density region and the second
initial configuration for the nematic phase for a model thatsection to the medium density region.

incorporated flexibility(i.e., the 13-2 mode). The only pre-

caution is to locate half of the flexible tails up, and half of A. The low density region

the fI(_aX|bIe ta.I|S.d(.)Wﬂ with respect to the nematic director The equation of state of a fluid can be described in terms
directions. This is important if one wishes to avoid the pos-

sibility of forming an artificial ferroelectric nematigvith all gl;itr:] ge tﬁ‘;ﬂ%ﬁﬂf’;’gdf‘ﬁf é ngarsezr:dzw(gg/-r());‘ m;hflﬂid

the tails up or down we did not obse_rve, in any Compres- i, mber of molecules per unit of volumek is the Boltz-

sion runs, the formation of ferroelectric nematic phases anﬁqﬁnn constant, arflis the temperature. The compressibility

:Egrggaeeltshlsoﬂ;?;:rgg?r? tr;]?; 3vpopriar in the phase diagram f3ctor can be expanded in powers of the packing fracyion
' =pV,,, whereV,, is the molecular volume. The volume of a

ane the nematic phase for the 42 model had been linear chain ofm hard spheres of diameter and of bond
equilibrated we then proceeded to expand the system by d?éngthL is given by[45]

creasing the pressure. We shall denote these runs as expan
sion runs. The high density nematic configuration obtained - 3[ (m—1)

for the 13+2 model was used as an initial configuration of Vm=€a 5

3L (L)\®
o \o

: 3
the nematic phase of the £ model. From this configura- ]
tion we proceeded to expand the nematic phase of thelll
model. Therefore our runs can be divided into compressio
runs, which were obtained from a low density gas isotropi
phase, and expansion runs which were obtained by expan
ing a high density nematic configuration.

In addition to theN pT Monte Carlo simulations described Z=1+B3y+Biy?+Biy3+---, (4)
so far we have also evaluated the virial coefficients of those
models in the isotropic phase. In the isotropic phase the segyhere
ond, third, and fourth virial coefficients were calculated for
each of the models from 350 to 8+7 inclusive. This was B} =Bn/V”m’l. (5)
done by following the method proposed by Vdd4|. For a
complete description of the means of calculating the virial For hard convex bodies the second virial coefficient can
coefficients the reader is referred to the aforementioned pase calculated exactl46]. However, the model used in this
per. In summary one treats the fluid as a multicomponenstudy is nonconvex, thus we have to numerically calculate
mixture, where each conformation represents a distinct mixB,,B3, andB, by using the procedure described in the pre-
ture component. We performed a Monte Carlo simulation orceding section.
an individual molecule. The simulation consisted of 20’ In Table | the second, third, and fourth virial coefficients

The coefficients of the expansion & in powers ofy
Peceive the name of virial coefficients and will be denoted as
n- As the model is a hard body the compressibility factor is
Smperature independent, hence the EOS is given by
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of the RFFFHS modelgwith m=15) considered in this wherem is the number of tangent hard spheres forming the
work are reported. Each of the models has the same molecghain. From this equation one can obtain expressions for the
lar volume. As can be seen the introduction of flexibility in second, third, and fourth virial coefficienitS0]

the model significantly modifies the virial coefficients. Let us

now analyze in detail each of the virial coefficients. The B;TP”: 1.5m+ 2.5, (8)
second virial coefficient decreases slightly as the molecular
flexibility increases. Since the second virial coefficient is a

*,TPT1_

measure of the volume excluded to a second molecule by the B3 = 7.25n+2.75, ©)
presence of the first molecule, it can be concluded that rigid
linear molecules present a greater excluded volume than B% TPT1=15.125n+2.875. (10)
flexible ones. For hard convex bodies the second virial coef-
ficient is given exactly by the equatigA6] Although Eq.(7) is designed for a tangent hard sphere chain,

N Zhou and co-workerg38] have developed an expression for

B =1+3«, (6)

an effective number of monomer unit$i,, which allows
where « is the parameter of nonsphericity which can pe TPTL to be applied to models of fused hard sphere chains,

evaluated from geometrical considerations. For hard spherd@’ L*=0.5. This is given by

a=1; for all other hard convex bodies>1. In other words,

the more “nonspherical” a body is, the larger its valuewof B [1+(m-1)L*]?

and hence oB% is. The molecules considered in this work me“_[l.,.(m_ 1)L*(3—L*2)/2)?
are nonconvex, thus E¢6) no longer holds; however, it can

be useg to explain, in a general fashion, the results of Tablg,,, Eq. (1) for the model described in this paper
| for B5 . These results indicate that in the |sotrpp|_c phaSE{RFFFHS withm=15) m,~5.6843, which gives

the molecules become more spherical as the flexibility of the
molecule increases.

ConcerningB} one can observe that the introduction of
flexibility slightly changes its valuéwe see an increase of . TPTL
about 4% with flexibility though the third virial coefficient B3 7~43.96, (13
seems to be less sensitive to the introduction of flexibility
than the second and the fourth virial coefficients. That has BZ'TPT1~ 88.85. (14)
also been noted by Vegat al. [47] for tangent hard sphere
models.

1D

B3 TPT'~11.02, (12

: . . ) . From a comparison with the results from this stid@ble |
We find a dramatic change Bj; with the introduction of |\« sae that TPT1 underestima®$ and B and overesti-

flexibility. From Table | we see tha; changes from nega- atesp* . The lack of reference to molecular flexibility

tive to positive values as the molecule becomes more fléXgihin TPT1 means that these values are invariant with re-
ible. Negat!ve values of the fourth virial coefficient are COm'spect to the changes in the flexibility that we introduce in our
mon for highly prolate molecule$48,49. Therefore the o461 To summarize TPT1 is not able to capture the subtle

negative values found for the 3% and 14-1 models are panges occurring in the virial coefficient when molecular
not surprising. Previously this has been attributed to th?lexibility is introduced into the model.

dominance of the “modified star graph” in the Ree and

Hoover formulation[48]. . . the compressibility factoZ is shown as a function of for

In summary the results of Table | show that the virial \5;;me fractions up to 0.2. The results presented were ob-
coefficients are affected by the Introduction of flexibility in 5ined from the virial expansion truncatedB, from TPT1
the molecular model. The third and especially the fourth, g from computer simulations of this work. Results corre-
virial coefficients increase as the molecule becomes MOr€hond to two models, namely £ and 11 4. As can be
flexible, while the second virial coefficient decreases. seen the virial expansion reproduces the simulation results

It was mentioned in the Introduction of this paper thatrather well. whereas TPT1 fails in describin ;
) , g the low density
Wertheim([36] and Chapmanet al. [37] have proposed an qqion The virial expansion correctly reproduces the slightly

EOS for chains of tangent hard sphere fluids. The EOS 0B aiier value ofZ for the 15+0 model with respect to the

tained in this way, denoted usually as TPT1, predicts that th 1+4 model. One can summarize by saying that although
EOS and hence the V'”?l cocl-:‘fﬁmlentﬁ a(e_;ndepﬁndent of thGirial coefficients are significantly affected by the introduc-
presence or absence of molecular flexibility. This equationjpy of flexibility the increases in the third and fourth virial

Let us now present results f@rat low densities. In Fig. 2

reads coefficients are offset by the decrease in the second virial
y2 coefficient, hence we see little change in the virial expansion
0 1+y+y?—y3 1+y-— > between each of the models. At higher packing fractions (
Z7=— = —(m—1) >0.20), the truncated virial expansion significantly underes-
pkT (1-vy)3 timates the compressibility factor. The inclusion of higher

(1—y)(1— E) virial coefficients would be required in order to provide a
(7) better description of the higher density region.
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TABLE Il. Equation of state for the 10 model fromNpT MC

simulations. The reduced pressurg* is defined as p*

6l =po3/(kT), Z stands for the compressibility factor for the vol-

ume fraction,S, for the order parameter. The different phases have
s been labeled ak (isotropig, N (nematig¢, and Sm(smectig.
p* y 4 S Phase

N ¢ 0.10 0.138 3.37 0.10 |
0.20 0.191 4.89 0.09 |
81 0.40 0.255 7.34 0.08 |
0.50 0.277 8.43 0.19 |
27 0.60 0.296 9.45 0.12 |
0.65 0.306 9.92 0.15 I
1r 0.70 0.319 10.26 0.09 |
0.75 0.333 10.52 0.58 N
0. Y Y XD o 0.80 0.346 10.80 0.66 N
) y ) ) 0.85 0.354 11.22 0.77 N
0.90 0.368 11.43 0.73 N
FIG. 2. Monte Carlo resultscompressibility factor versus vol- 0.95 0.376 11.80 0.81 N
ume fraction of the RFFFHS modelésymbols in the low density 1.00 0.386 12.09 0.87 N
region of the isotropic phas@®, 11+4 (isotropig; », 15+0 (iso- 1.05 0.393 12.47 0.85 N
tropic). The equation of state obtained from the virial expansion is 1.10 0.400 12.86 0.90 N
also presented, 14 virial expansion(dotted ling, 15+0 virial 115 0.426 12.60 0.96 N

expansion(dashed ling The solid line represents the TPT1 EOS

using the Zhoet al. [38] “correction”.

theoretical treatments concerning the isotropic-nematic tran-

sition. This has been illustrated by Williamson and Jackson
We shall now present results for the isotropic phase af9] for fully rigid tangent hard spheres. We feel that this

medium densitiegnamely those witly>0.20). In Fig. 3 the theory could be extended to the RFFFHS model by numeri-

EOS in the isotropic region as obtained from TPT1 and fromcal or analytical[11] calculation of the excluded volume.

the simulation results of this work are plotted. As can be

B. The medium density region

seen TPT1 performs very well in this region. In fact at me-
dium densitiegin the isotropic phageTPT1 correctly pre-
dicts that the EOS is hardly affected by the introduction of
molecular flexibility.

IV. THE ISOTROPIC-NEMATIC TRANSITION

In this section we shall focus on the results for the
isotropic-nematic transition. This section will be divided into

The success of TPT1 in the isotropic phase at mediunﬁhree sections. In Sec. IV A results for fl,l”y rlgld models will
densities strongly suggests that this theory could be used féte presented, namely the £ and the 1% 0. In Sec. IVB
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FIG. 3. Monte Carlo resultfreduced pressurp* = po>/(kT)
versus volume fractiofor the EOS of the RFFFHS models in the
isotropic phase at medium densitigymbolg. Results correspond
to +, 8+7; X, 9+6; *, 10+5; 0, 11+4; A, 13+2; andO, 15+0.
The dashed line represents the TPT1 EOS using the Zhal

“correction”.

we shall analyze the effect of adding a flexible tail. To do
this we shall compare the results for the+1@ model with
the 11+4 model. Finally, in Sec. IV C we shall analyze the
effect of introducing flexibility and present the results for the
15+0, 13+2, 10+5, 9+6, and 8+7 models.

A. Isotropic-nematic transition of fully rigid models

First we shall present the results for the+1d and 15
+0 models. Results for the #10 model are given in Table
Il and the results for the 250 model are given in Table Il
for N=108 and in Table IV forN=500. In all the cases
reported results correspond to compression runs.

On compression of the isotropic phase a nematic phase
spontaneously forms at a packing fractionyef 0.33 for the
11+ 0 model(Table I). For the 15-0 model the phase tran-
sition occurred at a packing fraction pf0.28. Whittle and
Masters found a nematic phase for the-®@ model aty
=0.42. Obviously as the molecule becomes more elongated
the isotropic-nematic transition occurs at lower volume frac-
tions. This is also found for hard ellipsoids, hard spherocyl-
inders, and other hard bodies.
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TABLE Ill. Equation of state for the 150 model fromNpT TABLE IV. Equation of state for the fully rigid 150 model
MC simulations(108 molecules The notation is as in Table II. from NpT MC simulations(500 molecules The notation is as in
Table II.
p* y z S Phase
*
0.02256 0.067 2.10 | P y z = Phase
0.07652 0.129 3.74 | 0.10 0.147 4.31 0.05 |
0.18233 0.193 5.95 | 0.25 0.219 7.24 0.08 |
0.30 0.240 7.90 0.13 | 0.35 0.255 8.68 0.08 |
0.35 0.276 8.01 0.78 N 0.45 0.297 9.60 0.75 N
0.40 0.296 8.52 0.81 N 0.50 0.332 9.54 0.84 N
0.45 0.314 9.04 0.88 N 0.55 0.346 10.06 0.87 N
0.50 0.332 9.52 0.90 N 0.60 0.359 10.58 0.89 N
0.55 0.345 10.07 0.89 N 0.65 0.370 11.13 0.90 N
0.60 0.359 10.56 0.92 N 0.70 0.376 11.78 0.92 N
0.65 0.379 10.83 0.95 N 0.75 0.392 12.09 0.93 N
0.70 0.382 11.58 0.95 N 0.80 0.401 12.61 0.94 N
0.85 0.418 12.86 0.95 N
0.90 0.425 13.40 0.96 N
It is interesting to compare the densities at which the nem- ¢ g5 0.441 13.62 0.97 Sh-
atic phase forms for the RFFFHS model considered in this 1 gg 0.465 13.61 0.96 SH-

work with the densities at which the nematic phase forms for
other hard bodies, such as spherocylind&isor linear tan-
gent hard spherg®]. A comparison is made in Table V for to the spherocylinder limit. The way in which the spherocyl-
models having the same length-to-breadth ratio. Let us stafhder limit is obtained from models of hard spheres has been
by comparing spherocylinders with the model of this work.considered in more detail by Jaffer, Opps, and Sullive.
Spherocylinders are found to form a nematic phase at higher |n this work we have not made a systematic study of the
volume fractions than the model used in this study. This isnfluence of system size dependence on the results. The only
true for the two length-to-breadth ratios presented in Tablenodel for which larger systems were considered was the
V. This is a consequence of the fact thgt of spherocylin-  15+0 model. The results of this model fo¢=108 andN

ders is lower thaB3 of the RFFFHS model having the same =500 are shown in Fig. 4. We do not observe any significant
length-to-breadth ratio. The nonconvex character of thelifferences in the EOS in the isotropic phase.

model of this work means that a sphere sliding on the surface In both systems a nematic phase is formed spontaneously
of the molecule cannot efficiently penetrate the cavities bealthough it appears at slighter higher densities for the system
tween two monomer sitgl5]. This is not the case for the with N=500. This shift of the phase transition to a slightly
spherocylinder where a sphere can slide easily over the suhigher density is expected since the phase transition occurs
face of the spherocylinder. This is reflected in the values ofvhen orientational correlations are commensurate with the
B3 . Also in Table V the results for linear tangent hard dimensions of the simulation box, which are slighty larger
spheres are presented. As can be seen the results of this wddkt the 500 molecule system. In the nematic phase we do not
are in fair agreement with those reported by Williamson andbserve any significant differences in the EOS between the
Jackson. We conclude that the phase behavior of modelsvo systems. For densities higher thar 0.41 we observe
presented in this work lies between that of the linear tangerthat the system witiN=108 is attempting to form a smectic
hard sphere model and the spherocylinder model. Notice thaghase(identified by analyzing the snapshots of the system
by keeping the length-to-breadth ratio constant and increasnd by a kink in the EOS but the size of the system pre-
ing the number of spheres of the modahd correspondingly vents the formation of a conclusive smectic phase. When
reducing the bond lengththe model of this work should tend compressing the system witN=500 a smectic-A phase

TABLE V. Packing fractions at which the isotropic-nematic transition occurs for spherocylinders, the
model of this work, and the rigid tangent linear hard sphere model. The length-to-breadth ratio of the model
is denoted ay.

Model Study y I-N transition
Spherocylinder Bolhuis and FrenKéf] 9.4 0.28<y=0.32
Our model 15-0 9.4 0.26sy=<0.29
Spherocylinder Bolhuis and Frenkéf] 7.0 0.36sy=<0.37
Our model 180 7.0 0.3%y=<0.33
THS Wiliamson and Jacksd9] 7.0 0.303<y=<0.312(on compression
THS Wiliamson and Jacksd®] 7.0 0.285<y=0.304(on expansion
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FIG. 4. The equation of state from the MC simulatioqs,
15+0 500 moleculegisotropig; 0, 15+0 500 moleculegnem-
atic); 4, 15+0 500 moleculegsmectig; *, 15+0 108 molecules
(isotropig; X, 15+0 108 moleculegnemati¢. The curve repre-
sents the TPT1 EOS using the Zheual. correction.

spontaneously forms at>0.43. This is more clearly illus-
trated by showing a snapshot of the systéfig. 5).

In summary the influence of system size in the EOS of the
isotropic and nematic phases is quite small and the same ist-4°
true for the isotropic-nematic transition. However, system
size effects are important when considering the nematic- L

smectic transition. Although the system with=108 gives

some indications of a transition to a smectic phase only the
larger system wittN =500 formed a truly smectic phase. We

PHYSICAL REVIEW B4 011703

TABLE VI. Equation of state for the 144 model fromNpT
MC simulations(compression runs The notation is as in Table II.
The square root of the average squared end-to-end distance is de-
noted as/R?)*2 and is given ino units. The notatioN/Sm indi-
cates that the transition from the nematic to the smectic phase is
taking place.

p* y z S (R?)12 Phase
0.02260 0.067 2.12 7.2052 |
0.07652 0.130 3.72 7.1969 |
0.18233 0.190 6.05 7.1914 |
0.37136 0.253 9.25 7.1949 |
0.70 0.315 14.04 0.15 7.2269 |
0.80 0.328 15.43 0.11 7.2217 |
0.85 0.339 15.84 0.05 7.2237 |
0.90 0.345 16.51 0.13 7.2391 |
0.95 0.350 17.16 0.25 7.2407 |
1.00 0.363 17.42 0.35 7.2941 |
1.05 0.373 17.80 0.76 7.3557 N
1.10 0.380 18.28 0.68 7.3746 N
1.15 0.384 18.94 0.79 7.3531 N
1.20 0.390 19.47 0.74 7.3641 N
1.25 0.396 19.95 0.70 7.3660 N
1.30 0.408 20.16 0.70 7.4200 N/Sm
1.35 0.415 20.56 0.78 7.4298 N/Sm
1.40 0.422 20.95 0.76 7.4283 N/Sm

0.434 21.11 0.79 7.4278 N/Sm
0.438 21.64 0.77 7.4494 N/Sm
55 0.444 22.05 0.80 7.4299 Sm
1.60 0.449 22.50 0.81 7.4596 Sm
1.65 0.453 23.02 0.82 7.4639 Sm

shall describe our results for smectic phases as being prelimi- B. Adding a flexible tail

nary.

FIG. 5. A snapshot of the 350 model in the smectié- phase
for a system of 500 molecules.

We shall now analyze the effect of adding a flexible tail to
the 11+0 model. In particular we shall consider the+l4
model in which a tail consisting of four monomer units is
added to the rigid core of 11 monomers. In principle one
would expect that the addition of a flexible tail would hinder
liquid crystal phase formation; fully flexible models do not
have liquid crystal phases at all. However, due to the bond
length constraint.* =0.6 and the condition of no intramo-
lecular overlap the tail is not as flexible as it may first appear.
In fact each flexible bond can deviate only 67° from the
direction of the previous bond to avoid overlap between site
n and siten— 2. Therefore, linear configurations are still pos-
sible and it is not clear whether the main effect of adding the
tail is to increase the overall molecular elongation thus mak-
ing the formation of the liquid crystal phase easier.

The simulations results for the ¥4 model are presented
in Table VI. It can be seen that a nematic phase is formed at
y~0.37. Since for the 130 model the nematic phase is
formed aty~0.33 one concludes that the addition of a flex-
ible tails moves the isotropic-nematic transition to higher
densities. The effect is important. Therefore the addition of a
flexible tail makes the nematic phase less stable. In Table VI
results for the square root of the mean squared end-to-end
distance(R?)Y2, are also shown. Structural changes are ob-
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y=0.41. Although our results for smectic phases are prelimi-
nary due to the small size of our systefd=¢108), there is
strong indication of formation of a smectic phase for the
11+4 system whery>0.41. In the observed smectic phases
the rigid cores form layers, whereas the flexible tails fill the
space between the layers. This is similar to the behavior
found by Duijneveldt and Allen for spherocylinders which
have ideal tail§33].

We find that the range for which a nematic phase is stable
is much smaller in the 44 model than in the 1£0 model
for two reasons. First because the isotropic-nematic transi-
tion has moved to higher densities. Secondly because the
nematic-smectic transition seems to be moving to lower den-
sities when the flexible tails are added. To summarize: the
addition of flexible tail shifts the isotropic-nematic transition
to higher densities, and stabilizes the smectic phase, thus
significantly reducing the range of densities where the nem-
atic phase is stable.

C. Introducing flexibility

served when going from the isotropic to the nematic phase. We shall now analyze the changes that occur when mono-
In particular an increase is seen in the end-to-end distanomers of a fully rigid model become flexible. We shall start
when moving to the nematic phase. This is more clearly seefiom the 15+0 model and will change the last; monomers

in Fig. 6 where(R?)1? is shown as a function of the density of the model to allow for flexibility.

for the 114-4 model.

Let us start with the limiting case. Since fully flexible

The increases ifR?)Y2 correspond to a preference for a chains do not form liquid crystal phases one may expect that
more linear configuration in the nematic phase. The tails tensvhen m; is large enough no liquid crystal phase would be
to be aligned with the nematic director in the nematic phaseobserved. In the 87 model the length-to-breadth ratio of the
This effect has been noted in previous studigs|.

In Fig. 7 the EOS for the 144 and the 130 models are

rigid core is about &. The anisotropy of the rigid core is
still significant. Whittle and Masters observed a nematic

compared. The shift of the isotropic-nematic transition tophase for the &0 model. In Table VII the EOS for the87

higher densities is clearly seen. For the+#l system we

as obtained from compression runs is presented. It can be

observe a stable nematic phase for volume fractions in theeen that even for volume fractions as highyas0.48 the
range 0.3%y<0.41. However, for higher densities the sys- system remains in the isotropic phase. No nematic phase is
tem forms a smectic phase. Smectic phases were identififdrmed when compressing this system. For the highest den-
by graphical visualization. A kink is observed in the EOS atsities the fluid configurations, although isotropic, are of

25
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FIG. 7. The equation of state from the MC simulations. *;+#1
(isotropig; I, 11+4 (nematig; M, 11+4 (smectig; +, 11+0 (iso-

L L
0.4 045
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glassy character indicating the vicinity of the fluid-solid tran-
sition. The conclusion then is that when a sufficient number
of the monomers in the chain are flexible the liquid crystal
phase disappears completely from the phase diagram. Obvi-
ously one would anticipate the same results for the models
with m;>7. What happens when the number of flexible
monomers is small and the rigid region of the molecule
is big ?

Let us start with the results for the £2 model. Results
from compression runs from the isotropic fluid are presented
in Table VIII. It can be seen that a nematic phase is sponta-
neously formed at a volume fraction of about 0.33. We
also performed expansion runs. The expansion runs were
performed as follows. We started from a nematic configura-
tion of the 15+0 model withy=0.35. Then we introduced
the flexible tails, with half of the molecules having the tail up
and half of the molecules having the tail dowsith respect
to the nematic directgr Several long runs are then per-

tropic); X, 11+0 (nemati¢. The dotted curve represents the TPT1 formed to allow the system to equilibrate at this density.

EOS for the 150 RFFFHS model using the Zhat al. correction.

Then, taking this equilibrated configuration as the initial

The dot-dashed curve represents the TPT1 EOS for the011 state, several runs were performed by slowly decreasing the

RFFFHS model using the Zhat al. correction.

pressure. Another set of runs were launched from the initial
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3.00 0.470 40.42 0.14 6.0256
3.05 0.472 40.93 0.21 6.0793
3.10 0.471 41.63 0.23 6.1319
3.15 0.473 42.15 0.16 6.1019
3.20 0.479 42.31 0.14 6.1787

tions of abouty=0.42. Our simulations show that the #3
model has a stable nematic phases for volume fractions in
the range 0.32y<<0.42.

We now move on to the 105 system. In Table X results
obtained by compression of the isotropic fluid phase are pre-
configuration by slowly increasing the pressure. Results obsented. A nematic phase is formedyat 0.39 (for the 15+0
tained in this way are presented in Table IX. The line divid-model the nematic phase appears yor0.28). Therefore
ing the results in Table IX separates the compression fronntroducing a flexible tail of five monomer units moves the
the expansion runs. By decreasing the pressure we observigdtropic-nematic transition to much higher densities. This
a nematic-isotropic transition for~0.31. The existence of mirrors the trend already observed for thetZBmodel and
hysteresis loop§i.e., the nematic phase is obtained by com-
pression at slightly higher densities than the densities at TABLE X. Equation of state for the 185 model fromNpT
which the isotropic phase appears by expansismusual in ~ MC simulations(compression runsThe notation is as in Tables Il
first-order phase transitions. Therefore the-23system pre- and VL.
sents an isotropic-nematic transition at volume fractions of
abouty~0.32. Taking into account that the nematic phase of P y Z S (R2)H2 Phase
the 15+0 models appears for V(_)Iume fr_actions o_f abQL‘It. 1.05 0.356 18.65 0.20 6.8092
~0.28 we see thgt the effect of mtr_o_ducmg a flexible tail is 110 0.361 19.25 0.11 6.7993
to shift the transition to higher densities. When compressing , ;5 0.365 19.95 0.11 6.8036

the nematic phase a smectic phase appears for volume frac—l_20 0373 20.37 015 6.8270

1.25 0.379 20.89 0.16 6.8340

TABLE VII. Equation of state for the 7 model fromNpT TABLE IX. Equation of state for the 182 model fromNpT
MC simulations(compression runs The notation as in Tables I MC simulations(expansion and compression runs seeded from a
and VI. nematic configuration The notation is as in Tables Il and VI. The

line dividing the results in the table divides the compression from

p* y z S (R?)112 Phase the expansion runs.

195 0414 2979 027  6.0304 | p* y 7 S (R  Pphase

2.00 0.420 30.12 0.09 6.0534 I

2.05 0.420 30.90 0.17 6.0111 [ 0.02260  0.067 211 7.9464 l
2.10 0.424 31.33 0.21 6.0059 [ 0.07652  0.130 371 7.9459 l
2.15 0.427 31.90 0.23 5.9603 [ 0.18233  0.192 5.98 7.9460 l
2.20 0.429 32.45 0.20 5.9585 [ 0.37136  0.255 9.19 7.9503 I
225 0.430 33.09 0.10 6.0020 I 0.50 0.283 11.14 0.11 7.9517 |
2.30 0.434 33.58 0.16 5.9735 I 0.55 0.307 11.32 0.48 7.9775 N
2.35 0.437 34.03 0.14 5.9721 [ 0.60 0317 1196 062 79786 N
2.40 0.441 34.42 0.13 6.0326 [ 0.65 033 1222 078 80023 N

2.45 0.442 35.05 0.16 6.0656 [ 0.70 0344 1285 082 80054 N

2.50 0.443 35.73 0.15 6.0146 I 0.80 0.361 14.01 0.82 8.0160 N

2585 0445 3625 017 60063 | 0.85 0374 1436 084 80194 N

2.65 0.452 37.11 0.20 6.1276 I 0.90 0.380 14.95 0.90 8.0253 N

270 045 3758 020 59808 | 0.95 0393 1528 090  8.0315 N/Sm

275 0457 3810 023 59987 | 1.00 0409 1546 095  8.0268 N/Sm

28 0458 3873 034 59713 | 1.05 0423 1569 0096  8.0368 N/Sm

28 0464 3891 037 60630 | 1.10 0429 1622 096 80344 N/Sm

290 0466 3941 024 61981 | 1.15 0433 1678 0094  8.0383 N/Sm

295 0467 3994 025 61039 : 1.20 0444 1706 096  8.0383  Sh-

|
|
|
|

zzzz———-————

TABLE VIII. Equation of state for the 132 model fromNpT 1.30 0.384 21.41 0.36 6.8514
MC simulations(compression runsThe notation is as in Tables Il 1.35 0.386 2214 0.41 6.8717
and V. 140 0395 2258 045  6.9197
1.45 0.404 22.45 0.46 6.9460
* z R2)1/2 Phase
P y > (R 150 0406 2338 055  6.9379
0.55 0.297 11.72 0.20 7.9590 | 1.55 0.415 23.63 0.67 6.9925 N
0.60 0.306 12.42 0.12 7.9572 | 1.60 0.418 24.23 0.80 7.0466 N/Sm
0.65 0.331 12.43 0.83 7.9965 N 1.65 0.435 23.98 0.79 7.1019 Sm
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TABLE XI. Equation of state for the 96 model fromNpT MC
simulations(compression runs The notation is as in Tables Il and
VI.

p* y z S (R?)12 Phase

1.35 0.377 22.65 0.11 6.3759
1.40 0.381 23.25 0.15 6.3334
1.45 0.387 23.72 0.22 6.3589
1.50 0.390 24.33 0.21 6.3864
155 0.396 23.76 0.27 6.3705
1.60 0.402 25.17 0.29 6.4489
1.65 0.407 25.65 0.37 6.4744
1.70 0.409 26.28 0.24 6.4670
1.75 0.414 26.76 0.28 6.4412
1.80 0.413 27.60 0.18 6.4146
1.85 0.415 28.20 0.32 6.4593
1.90 0.417 28.82 0.15 6.4337

FIG. 8. A snapshot of the 205 model in the nematic phase for  1.95 0.423 29.14 0.18 6.4038
a system of 108 molecules. 2.00 0.422 30.03 0.17 6.4810
2.05 0.428 30.29 0.33 6.4626

I
I
|
I
I
I
I
I
I
I
|
|
I
I
I
is confirmed by the 185 model. A snapshot of the nematic 210 0435 3056 048 64801 N
N
N
N

phase formed is given in Fig. 8. This snapshot was obtained 2-15 0.440 30.93 0.45 6.5273
from compression of the isotropic fluid. 2.20 0.443 31.46 0.43 6.5717

It can be seen that the tails are up and down with respect 2.25 0.449 3171 0.63 6.5663
to the nematic director direction. When compressing the
nematic phase of the #b model some indications of the
formation of a smectic phase fgr=0.42 are observed. In  phase from the expansion runs are different. In fact a nematic
summary, for the 185 model the stability range of the nem- phase is obtained by compression whereas in the expansion
atic phase seems to be quite small, €:39<0.42. . runs the ordered phase is a smectic one. For a certain density

Let us now focus on the last model considered in thishe pressure of the smectic phase is lower than that of the
work. This is the 96 model. This model is interesting for hematic phase. That suggests that the smectic phase can in-
two reasons. First because it is sandwiched betweentfe 8 j.o4 be more stable than the nematic phase for thé 9
which, as discussed previously, has no liquid crystal IC’hase?‘nodel. The results of this work strongly suggest that the
and the 1@-5 which does present liquid crystal phases. It isnematic phase does not appear for thesamodel. Instead

not clear whether the 86 model will or will not exhibit . . . - o
liquid crystal behavior. Second, even assuming that &6 9 we suggest that a direct isotropic-smectic transition may oc

model has liquid crystal phases it is not clear whether it will

or will not have a stable nematic phase. Taking into account TABLE XII. Equation of state for the 6 model fromNpT

the narrow range of stability of the nematic phase for theéMC simulations(expansion and compression runs seeded from a

10+5 model the possibility of going directly from the fluid Smectic configuration The notation is as in Tables Il and VI. The

to a smectic phase appears as a possible scenario. line d|V|d|ng the results in the Table divides the compression from
In Table XI the EOS as obtained by compression of the"® €xpansion runs.

isotropic phase is presented. A nematic phase is formed

spontaneously foy=0.435. We also perform a second type p* y z > (R Phase
of run; starting from a smectic configuration of the+1® 1.75 0.423 26.17 0.65 6.6935 Sm
model withy=0.44 we switched to the-96 model. Several 1.80 0.431 26.46 0.66 6.7552 Sm
runs were then performed to equilibrate the initial configu- 1 g5 0.429 27.29 0.62 6.6516 sm
ration. We then performed a series of expansion and com- ; gg 0.435 27 .66 0.70 6.6542 sm
pression runs. Results from these runs are shown in Table ; g5 0.438 28.19 0.73 6.7567 sm
XIl. It was found from these runs that the smectic phase was

stable up to the pressure at which it spontaneously trans-2.00 0.446 28.39 0.70 6.7417 sm
forms into an isotropic fluid. In Fig. 9 the results from the 2.05 0.445 29.15 0.65 6.7371 Sm
compression and expansion runs are shown. It can be seerp.10 0.447 29.72 0.62 6.6853 Sm
there is no agreement between the results of the compressiore.15 0.453 30.04 0.73 6.7576 Sm
(starting from an isotropic configuratiprand those of the 2.20 0.454 30.70 0.67 6.6961 Sm
runs which were seeded from a smectic configuration. This is 2,25 0.456 31.20 0.68 6.7302 Sm
not just a hysteresis loop. The discrepancy arises because the 3g 0.458 31.75 0.68 6.7052 Sm

ordered phase obtained by compression and the ordered
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transition to higher densities. If the tail is long enough, as in
the 8+7 model, then no liquid crystal phase is found at all,
also the introduction of the flexible tail makes the nematic
phase less stable with respect to the smectic phase. There-
fore, we found here a narrow range for the nematic phase for
the 11+4 and 106+5 models. For the 96 the results of this

« work suggest a direct transition from the isotropic to the
smectic phase. Two phases win and one phase loses when
| introducing short flexible tails into a rigid model. Isotropic

e and smectic phases gain further stability by the introduction
- of flexibility whereas the nematic phase becomes less stable
with respect to the other two. However, if the flexible tail is
too long, then the smectic phase also looses stability with
respect to the isotropic and the only expected transition is the
isotropic-ordered solid transition.

0f4 0.:15 0.5
y
FIG. 9. Equation of state for thet®% model.+, 9+6 (isotropic,
compression run X, 9+6 (nematic, compression run*, 9+6
(smectic, expansion run from smectic seed configuratibhe dot-
ted curve represents the TPT1 EOS for the-05RFFFHS model

using the Zhotet al. correction.

V. CONCLUSION

In this paper the effect of flexible tails on the isotropic-
nematic transition of hard systems has been analyzed by
means of Monte Carlo simulations. The model is formed by
cur, the nematic phase being completely destabilized for thign hard spheres with reduced bond length=0.6. The first
model. m, monomers of the chain are rigid and adopt a linear con-

Let us finish by presenting the global results obtained foffiguration whereas the lash; monomers are flexible. The
models with 15 monomer units. This is done in Fig. 10model presents symmetry since the rigid core and the flexible
where the results for the ¥, 13+2, 11+4, 10+5, 9+6, tails are formed by the same type of atoms. This feature
and 8+7 are given. This figure illustrates quite clearly the makes the RFFFHS model suitable for theoretical studies.
main findings of this work. The EOS of the isotropic fluid is Three problems have been addressed in this work. First, the
well described by Wertheim’s TPT1 and seems to be insenphase transitions for two fully rigid models, the 4@ and
sitive to the presence or absence of molecular flexibility.the 15+0, have been studied. Second, the effect of adding a
However, the phase diagram is dramatically affected by th@exible tail of four monomer units to the 30 model was
presence or absence of flexibility in the tail monomers of theanalyzed. Third, the effect of introducing flexibility in a
model. Introducing flexibility moves the isotropic-nematic model of 15 monomers has been studied. For each of these
models we have studied the EOS in the isotropic phase, the
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virial coefficients, and the location of the isotropic-nematic
t transition. Some preliminary results on the nematic-smectic
s A transition are also reported.
4,.‘4';'3 8+7 In our view the main conclusions that can be drawn from
=T i ] this work can be summarized as follows.
\ ;;{NQEF o6 | (i) The virial coefficients are strongly affected by the
,w"%fu%dj 1045 presence or absence of flexibility in the molecule. The sec-
Pl g,{,sz"x;_,p- o 11+4 ond viriall coefficient decreases.as the molgcule becomes
,_,x_".‘?‘i FAR 1342 more flexible whgreas the opposite pghawor is _found for the
N et e L5101 third, and especially for the fourth, virial coefficients.
P oS (ii) The extension of Wertheim’s TPT1 EOS proposed by
ost s S : Zhouet al.[38] incorrectly describes the low density behav-
e ior of the models considered in this work. However, this
Q

FIG. 10. The equation of state from the MC simulations.
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0.45

0.5

8+7 (isotropig; X, 9+6 (isotropig; *, 9+6 (nematig; [J, 9+6
(smectig; W, 10+5 (isotropig; ©, 10+5 (nemati¢; ®, 10+5
(smectig; A, 11+4 (isotropig; A, 11+4 (nematig; V, 11+4
(smectig; V¥, 13+2 (isotropig; ¢, 13+2 (nematig; ¢, 13+2
(smectig; solid black pentagon 150 (nematig, and the 15-0

EOS performs quite well in the medium density region of the
isotropic phase. The simulation results of this work illustrate
how flexibility hardly affects the equation of state in the
isotropic phase of these models at medium densities in agree-
ment with the predictions of TPT1.

(iii) Flexibility dramatically changes the appearance of
the phase diagram of hard models. The flexibility plays a
major role in determining the location of the liquid crystal

(smectig is a bold open circle. The dotted curve represents thedhases.

TPT1 EOS for the 150 RFFFHS model using the Zhoet al. (iv) Fully rigid linear models with 11 or 15 monomer
correction. The dot-dashed line is a sketch of the nematic-smectignits form nematic and smectic phases. The density of the
transition boundary. isotropic-nematic transition moves to lower densities as the
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chain becomes more anisotropic. generate the close packing structure of the models of this
(v) Adding a flexible tail to a rigid model of 11 monomers work, taking as a reference the close packed structure of hard
shifts the isotropic-nematic transition to much higher pres-dumbbell§51,52. The study of solid phases would certainly
sures and densities. Therefore the addition of tails make theequire nonisotropiéNpT simulations. For studying in more
nematic phase much less stable. The configurations adopt&gtail the smectic phase, besides nonisotrdpicT simula-
by the tail in the isotropic and in the nematic phase ardions, larger systems and defect free initial configurations are
slightly different. In the nematic phase the tails tend to align"equired. We plan to study these transitions in a future work.
with the direction of the nematic director. Models composed of chains formed from hard spheres
(vi) Introducing flexibility in a model of 15 monomer (either tangent or overlappihgave become quite popular in

units shifts the location of the isotropic-nematic transition toth€ Study of flexible molecules. This has been so since the
higher densities and pressures. In addition to that our resul eminal vyork b_y Wertheing36] and Chapma_nmzt al. [37],
suggest that smectic phases become more stable by the ﬁ\nd thg simulations of Honnell and Hal4], D'Ckm?‘”[zﬂ'
troduction of flexible tails. Therefore the range of stability of and Dickman and Ha|]26]._ Her_e we S_hOW Fhat this type of
the nematic phase shrinks when flexibility is introduced inmodel can also be quite _|nterest|r_1g in _the study . of
the model. mesophases for models which combine rigid and flexible

(vii) When the number of monomer units of the flexible se(\:/t\llonsh d. h tion that f listi q
tail is too large then no liquid crystal phase is found at all. | € shou ’ OC}N?V%’ rtn_en lon a; %r mé)re rela IS |c(;no i
Too much flexibility prevents the formation of liquid crystal €ls, such as models that incorporale bond angles and espe-
phases cially torsional potentials, the effect of flexible tails on the

Since the model used in this work is relatively simple andisotropic-nematic transition will not be so drastic. Models
taking into account the good description of the EOS of thethat include a tgrsmnal potent|al in the f'ex'b"? (e)lla_tre
much more inclined to form in the altans configuration

isotropic phase provided by TPT1 we believe that a theoret- . : o : .
ical description of the transitions found in this work is pos-t[31]' In'tour shlcmulrl]';mons 'f[r:.s not l%musu?l o .fmd alta']l cur:jec_i
sible. We indeed hope that the results of this paper encoura oroen“Irzafiitizz’\’,vsifrr]ﬁf;ior:: conformation 1S rarely tfound in

further theoretical work in the area. In addition to this the
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