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Isotropic-nematic phase transition: Influence of intramolecular flexibility
using a fused hard sphere model

Carl McBride, Carlos Vega, and Luis G. MacDowell*
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The role of flexibility on the liquid crystal isotropic-nematic phase transition has been studied by means of
Monte Carlo simulation. We present equations of state for the isotropic-nematic branches and, in the isotropic
phase, numerically calculated values for the virial coefficientsB2 , B3, andB4. We have studied two models:
11 hard sphere monomers fused in a linear configuration with a reduced bond length of 0.6 and a 15-monomer
version of this model in which monomers at one end of the chain become flexible. We have observed
spontaneous nematic liquid crystal formation for both of the fully rigid models, and also for models with up to
six flexible monomers in the tail. We conclude that molecular flexibility has a strongly destabilizing effect on
the nematic phase. This is probably due to the decrease in shape anisotropy that flexible tails allow.
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I. INTRODUCTION

It was Onsager@1# in 1949, who demonstrated that on
could predict an isotropic-nematic transition in a syst
whose molecules are modeled by long ‘‘hard’’ rods, or
other words, a model that consists only of excluded volu
interactions. He showed that for infinitely long rods the is
tropic nematic transition occurred at vanishingly small de
sities. Later, with the advent of the Monte Carlo simulati
@2#, the molecular dynamics simulation, and the developm
of fast computing machines, it became possible to stud
much greater range of models. In 1985 Frenkel and Mul
@3# demonstrated the formation of a stable nematic phase
a system of hard ellipsoids of revolution using Monte Ca
simulations. Later, in 1988, Frenkel@4# showed the forma-
tion of a stable smectic phase for the spherocylinder syst
thus revealing the enormous potential of computer simu
tion in the study of the rich phase behavior of complex fl
ids. The last 15 years have played host to a wide rang
studies, both theoretical and by means of computer sim
tion, for a great variety of models. For example, hard mod
that have been investigated include spherocylinders@5–7#,
hard ellipsoids@3,8#, linear chains of tangentially bonde
hard spheres~LTHS! @9,10#, and the fused hard sphere cha
model~FHSC! @11–13#. Liquid crystal formation in systems
composed of geometric hard bodies is well documented
we refer the reader to the following reviews@14–16#

Molecules that form liquid crystal phases~especially ther-
motropic nematic phases! rarely consist solely of a rigid
core; they are usually flanked by flexible units either at o
or both ends of the core@17#. The study of liquid crystal
formation in models that contain flexible units may be co
sidered as a logical progression in the route from the inv
tigation of the mesophasic behavior of hard geometric bod
to the point where one can accurately compute structural
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thermodynamic properties for any given mesogenic co
pound.

There are several ways in which flexibility can be intr
duced into a model. Flexibility may be introduced homog
neously; typically a model will consist of a number of ge
metric elements whose relative locations can vary accord
to some function. Models of this type have been studied
Wilson @18–20#, Dijkstra and Frenkel@21#, Yethiraj and
Fynewever@22#, and Fynewever and Yethiraj@23#, among
others. One of the conclusions drawn from work on su
models is that the introduction of flexibility destabilizes th
nematic phase with respect to an equivalent fully rig
model. In the case of a completely flexible model, such
that of the ‘‘pearl necklace’’ model@24–26# ~i.e., a fully
flexible tangent hard sphere model!, no liquid crystal phase
formation is observed. The introduction of flexibility in thi
manner provides a good starting point for studies of po
meric liquid crystals, which are composed of long chains t
have an overall degree of flexibility@27#.

Smaller mesogenic molecules are frequently found to
composed of a rigid core~for example, a linear series o
benzene rings! which has flexible groups~for example, alkyl
chains! attached at either one or both ends of the core s
tion. In this case one can make a clear distinction betwee
rigid section and a flexible section or sections. In this pa
we wish to examine the effect that the addition and the
troduction of a flexible tail has on the isotropic-nema
phase transition. With this goal in mind there are a num
of possible routes to address this problem. One possibilit
to use a realistic model. Examples of studies of this nat
can be found in the literature@28–32#. However, the addition
of soft potentials, bond bending, bond stretching, and po
bly torsional potentials, increases the complexity of t
model dramatically. This increase in complexity is reflect
in the considerable computational resources required in
study of such models. In this paper we have chosen to st
a much simpler model which, although more ‘‘ideal,’’ doe
allow us to study more Hamiltonians than the simulation o
realistic model would permit. This approach has alrea
been taken by other authors@33–35#. The work of Duijn-
eveldt and Allen is particularly interesting@33#. These au-
–
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thors have used a hard spherocylinder as the rigid core
an ‘‘ideal’’ tail ~made up by points which have zero volum
and which can not overlap with the spherocylinder! as the
flexible unit. They have considered the role of adding
flexible tail and concluded that the smectic phase is st
lized by the addition of the flexible tail. One limitation o
their model is the ideal character of the tail since it has z
volume, thus there are no tail-to-tail interactions. It is n
clear whether their conclusions hold equally well when
tails become nonideal.

In the early 1980s Wertheim proposed a theory for as
ciating fluids. When the association between sites beco
infinitely strong, chainlike fluids are formed. Starting wi
the equation of state~EOS! and structural properties of th
reference system formed by hard spheres, one can deter
the EOS of tangent hard sphere chains by using a pertu
tive approach. This is usually called first-order thermod
namic perturbation theory or ‘‘TPT1’’ theory. This theor
was proposed simultaneously by Wertheim@36# and by
Chapmannet al. @37#. The TPT1 EOS has been extend
@38# to the case where a certain degree of overlap is allow
between contiguous monomers of the chain~i.e., when the
reduced bond length is less than 1!. TPT1 provides us with a
good EOS for chains formed from hard spheres. A good E
for hard sphere chains is important as studies of
isotropic-nematic transition@10,9# rely on the isotropic EOS
However, it must be mentioned that according to Wertheim
TPT1 the EOS of the chains does not depend on chem
details such as bond angle or the presence or absenc
flexibility. This surprising result has been tested by compa
son with simulation results for short chains, and it has ind
been found that the EOS for short tangent hard sphere ch
is hardly affected by molecular flexibility@39#.

However, one may suspect that this finding cannot h
true for long chains; fully flexible chains do not form liqui
crystal phases whereas fully rigid chains form mesopha
Therefore, for long chains differences between rigid a
flexible models must indeed appear.

In this paper we shall study the liquid crystal formation
molecules formed by chains of hard spheres by mean
computer simulation. The choice of the model is motiva
by the great impact that Wertheim’s work has had on lite
ture concerning flexible molecules. We wish to address
issues concerning flexibility. The first issue is the addition
a flexible tail. We do this by comparing a model that consi
of a fully rigid linear chain of 11 monomers with a simila
model that has a flexible tail of four monomer units. Noti
that our tail is nonideal, a difference with respect to the wo
of Duijneveldt and Allen@33#. The monomers of the flexible
tail interact with each other through a hard sphere poten
Second, we shall study the effect of introducing flexibilit
For that purpose we shall start with a fully rigid linear cha
of 15 monomers and then study the effect that making mo
mers at one end of the chain fully flexible has on the ph
diagram. Therefore when discussing the role of flexibility
phase diagrams we shall make a distinction between ‘‘a
ing’’ flexible tails, or ‘‘introducing’’ flexible tails. The
model considered in this work has the appealing feature
the rigid and flexible parts of the molecule are formed by
01170
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same type of hard sphere monomers, thus the model ha
inherent symmetry between the rigid and the flexible pa
Another attractive feature is that the model is susceptible
theoretical treatment based on an extension of Werthei
work to nematic phases and to molecules that combine r
and flexible monomer units.

The format of this paper is as follows: in Sec. II we d
scribe the model in more detail as well as details of
Monte Carlo~MC! simulations. In Sec. III we present th
main results of this work for the isotropic phase. In Sec.
the main results of this work for the isotropic-nematic tra
sition will be presented. Finally our conclusions are p
sented in Sec. V.

II. MODEL AND COMPUTATIONAL TECHNIQUE

The molecular model used in this work consists ofmr
rigid hard spheres~or monomers! followed by mf flexible
hard spheres~or monomers!. Each of the monomers are o
diameters. The total number of hard spheres that constit
the molecule is denoted asm and is given bym5mr1mf .
The relative configuration of the rigid section remains un
tered during the simulation runs. Themf flexible monomers
are subject to Monte Carlo configurational bias. The bo
length between monomers is set atL50.6s thus giving a
reduced bond lengthL* 5L/s of 0.6. The interaction be-
tween monomers in different molecules or between n
bonded monomers of the same molecule is of the hard sp
type @40#. There are no bond bending or torsional potenti
between the monomers that form the flexible tail. The mo
mers in the tail may adopt any configuration so long as th
are free of intramolecular or intermolecular overlap. In pra
tice the constraint in the bond length toL* 50.6 makes de-
viations greater than 67.2° impossible for a certain monom
with respect to the vector formed by the two previous mon
mers of the chain. Overlap checks are made between all n
bonded pairs of atoms, both intermolecular and intramole
lar, using the minimum image convention. By doing th
even for intramolecular interactions, we avoid the possibi
of overlap between a given molecule and its own ima
Since all the interactions in the model are ‘‘hard’’ intera
tions the temperature becomes a redundant variable and
properties of the system depend only on the density. T
models used in this work will be denoted as rigid fully fle
ible fused hard sphere models~RFFFHS!. The model is de-
scribed in more detail in Fig. 1 for the casemr510, mf55
~or more succinctly we shall adopt the notation 1015!.

We shall now describe the models studied in this wo
First, two fully rigid models have been considered. T
length to breadth ratios are 9.4 for the 1510 model and 7.0

FIG. 1. Model used in this work. Snapshot of a 1015 RFFFHS
molecule in the gas phase.
3-2
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for the 1110 model. Whittle and Masters@12# found nematic
phases formr models consisting of eight monomers wi
L* 50.5 andL* 50.6. Thus we felt certain that the choice
molecules containing 11 and 15 monomer units would p
vide us with a nematic phases which we could study. T
choice of the dimensions for themr1mf515 model were
made in a loose relation to the dimensions of the well kno
mesogen 4-cyano-48-8-alkyl-biphenyl~8CB!.

A fused model has been chosen for two main reaso
First, fusing the spheres increases the convexity of the m
with respect to the tangent hard sphere model. William
and Jackson@9# have highlighted the possibility of molecule
that have a high degree of nonconvexity ‘‘locking’’ togeth
in the high density fluid, forming long-lived metastab
glassy states. We hope that this effect is reduced due to
more convex nature of our model. Second, the fused mo
allows for a more gradual introduction of flexibility tha
would be the case with a tangent hard sphere model.

To analyze the effect of the addition of a flexible tail to
rigid model we then studied the 1114 model. By comparison
of the 1110 model with the 1114 we are able to study th
effect of adding a flexible tail to a rigid core.

Next we have considered the introduction of flexibilit
Starting from the 1510 model we have introduced a flexib
tail while maintaining the total number of monomers of t
chain constant atm515. We have studied the 1312, 1114,
1015, 916 and 817 models. We then compare the resu
for these models with the 1510 case. This allows us to se
the effect that increasing the region of flexibility within th
molecule has while keeping the number of monomers c
stant.

We have performed the simulations using configuratio
bias Monte Carlo in theNpT ensemble. The shape of th
simulation box was either cubic or orthorhombic. The nu
ber of molecules used in all the cases wasN5108 although
for the 1510 model simulations were also performed f
N5500 to test for system size dependence. Isotropic sca
of the box dimensins was used throughout the simula
runs except for the 1510 500 molecule system where anis
tropic box scaling was used. Compression of the 108 m
ecule system is easier than compression of the 500 mole
system due to the higher probability of generating a confi
ration for which a trial volume move would be acceptab
The types of moves performed on the molecules inclu
translations and rotations. The internal degrees of freedom
the flexible tails were sampled by using the configuratio
bias algorithm@41#. A cycle includes a trial move per par
ticle ~translation 40%, rotation 40%, and configurational b
of the flexible tail 20%! plus a trial change of volume. A
typical run comprised of approximately 23105 cycles for
equilibration followed by 33105–53105 cycles for produc-
tion averages. The longer runs were performed for s
points that were seen to be near a phase transition.

Our study of the 1510 model with systems of both 10
and 500 molecules revealed no significant finite size effe
We believe that the main conclusions of this work conce
ing isotropic-nematic transitions would not be affected
using a larger system.

One drawback of studying systems of justN5108 mol-
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ecules concerns the formation of smectic phases. To s
smectic phases much larger systems are required, thus a
ing the formation of several smectic layers. For smectic a
solid phases nonisotropicNpT simulations should be used
Moreover, when studying smectic and solid phases by me
of computer simulation it is a good idea to have the init
configurations defect free@33#. On compressing nemati
phases it is possible to observe the spontaneous formatio
smectic phases; however, the smectic phases obtaine
compression quite often contain defects~for example, mol-
ecules often become trapped between layers, lying perp
dicular to the layer normal!. In our simulations we observe
the formation of smectic phases by compression. We s
indicate that when reporting the simulation results. Wher
the spontaneous formation of smectic phases from the n
atic phase is an interesting feature we recommend cau
when analyzing the actual values of the densities at wh
this transition appears. Those densities will certainly be
fected when larger systems are considered, and when de
free smectic configurations are used.

We would like to stress at this point that the main goal
this work is to study the role of flexible tails on the isotropi
nematic transition and our results concerning the nema
smectic transition are just preliminary for the reasons
scribed above.

During the simulations the nematic order parame
~which is zero for an isotropic fluid and one for a perfec
aligned system! was continuously monitored. This was don
by first calculating a director vector@42#

Qab5
1

N (
j 51

N S 3

2
êj aêj b2

1

2
dabD , a,b5x,y,z, ~1!

whereQ is a second rank tensor,êj is a unit vector along the
long axis ~defined as the eigenvector associated with
largest eigenvalue of the inertia tensor! of the molecule, and
dab is the Kronecker delta. Diagonalization of this tens
gives three eigenvaluesl1 , l0, andl2 , andn is the eigen-
vector associated with the largest eigenvalue (l1). From this
director vector the nematic order parameter is calcula
from @43#

S25l15^P2~n•e!&5^P2~cosu!&5 K 3

2
cos2u2

1

2L ,

~2!

whereS2 is known as the uniaxial order parameter. HereP2
is the second-order Legendre polynomial,u is the angle be-
tween a molecular axes and the directorn, and the angular
brackets indicate an ensemble average. As well, the nem
order parameter snapshots of simulation configurations w
also taken for use as an aid to phase identification.

The simulations were performed as follows: for ea
model we started from a very low density state. The init
configuration was that of thea face-centered-cubic structur
@40#, thus the initial nematic order parameter was zero a
no preferential direction to the molecules was artificially i
troduced. Within a few steps the solid melts and is tra
formed into a low density isotropic fluid. We then proceed
3-3
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TABLE I. Calculated virial coefficients for the isotropic phase.

mr mf B2* B3* B4* B3* /(B2* )2 B4* /(B2* )3

15 0 12.90660.002 55.85960.03 29.05860.26 0.335 20.0042
14 1 12.85460.003 56.16160.03 22.84260.214 0.340 20.0013
13 2 12.73760.008 56.50460.02 5.46160.14 0.348 0.0026
12 3 12.60260.006 56.80560.08 14.59460.31 0.358 0.0073
11 4 12.46960.015 57.20860.03 23.28560.86 0.368 0.0120
10 5 12.23960.008 57.51260.14 36.56760.60 0.384 0.0199
9 6 12.11560.019 57.94660.12 46.06160.91 0.395 0.0259
8 7 11.87960.003 58.20160.13 60.54861.02 0.412 0.0361
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compress this fluid by increasing the pressure. The last c
figuration from a certain pressure was used as an initial c
figuration for the next, higher, pressure. States for which
nematic order parameter was greater than 0.4 were class
as being nematic. All states obtained from compression
low density isotropic fluid will be denoted as compressi
states.

In addition to compression states, expansion runs w
also performed. Let us briefly describe how the expans
runs were undertaken. The system most likely to sponta
ously form a nematic phase from the isotropic fluid was
1510 model. Once a high density nematic phase was
tained for the 1510 model this configuration was used as t
initial configuration for the nematic phase for a model th
incorporated flexibility~i.e., the 1312 model!. The only pre-
caution is to locate half of the flexible tails up, and half
the flexible tails down with respect to the nematic direc
directions. This is important if one wishes to avoid the po
sibility of forming an artificial ferroelectric nematic~with all
the tails up or down!. We did not observe, in any compre
sion runs, the formation of ferroelectric nematic phases
therefore this phase does not appear in the phase diagra
the models considered in this work.

Once the nematic phase for the 1312 model had been
equilibrated we then proceeded to expand the system by
creasing the pressure. We shall denote these runs as e
sion runs. The high density nematic configuration obtain
for the 1312 model was used as an initial configuration
the nematic phase of the 1114 model. From this configura
tion we proceeded to expand the nematic phase of the 114
model. Therefore our runs can be divided into compress
runs, which were obtained from a low density gas isotro
phase, and expansion runs which were obtained by exp
ing a high density nematic configuration.

In addition to theNpT Monte Carlo simulations describe
so far we have also evaluated the virial coefficients of th
models in the isotropic phase. In the isotropic phase the
ond, third, and fourth virial coefficients were calculated f
each of the models from 1510 to 817 inclusive. This was
done by following the method proposed by Vega@44#. For a
complete description of the means of calculating the vi
coefficients the reader is referred to the aforementioned
per. In summary one treats the fluid as a multicompon
mixture, where each conformation represents a distinct m
ture component. We performed a Monte Carlo simulation
an individual molecule. The simulation consisted of 43107
01170
n-
n-
e
ed
a

re
n
e-
e
b-

t

r
-

d
of

e-
an-
d

n
c
d-

e
c-

l
a-
nt
x-
n

Monte Carlo passes. Every 13104 passes the instantaneou
configuration was written to a file thus obtaining 4000 co
figurations. From this set of 4000 configurations four diffe
ent conformations were selected randomly and the virial
efficients were calculated for those selected conformers. T
is repeated 1600 times and the average value of the v
coefficients is calculated.

III. RESULTS FOR THE ISOTROPIC PHASE

In this section results will be reported for the isotrop
phase. We shall divide the results into two sections; the fi
section corresponds to the low density region and the sec
section to the medium density region.

A. The low density region

The equation of state of a fluid can be described in ter
of the compressibility factorZ, whereZ5p/(rkT), with p
being the pressure,r5N/V the number density of the fluid
~number of molecules per unit of volume!, k is the Boltz-
mann constant, andT is the temperature. The compressibili
factor can be expanded in powers of the packing fractioy
5rVm , whereVm is the molecular volume. The volume of
linear chain ofm hard spheres of diameters and of bond
lengthL is given by@45#

Vm5
p

6
s3H 11

~m21!

2 F3L

s
2S L

s D 3G J . ~3!

The coefficients of the expansion ofZ in powers of y
receive the name of virial coefficients and will be denoted
Bn . As the model is a hard body the compressibility factor
temperature independent, hence the EOS is given by

Z511B2* y1B3* y21B4* y31•••, ~4!

where

Bn* 5Bn /Vm
n21 . ~5!

For hard convex bodies the second virial coefficient c
be calculated exactly@46#. However, the model used in thi
study is nonconvex, thus we have to numerically calcul
B2 ,B3, andB4 by using the procedure described in the p
ceding section.

In Table I the second, third, and fourth virial coefficien
3-4
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of the RFFFHS models~with m515) considered in this
work are reported. Each of the models has the same mol
lar volume. As can be seen the introduction of flexibility
the model significantly modifies the virial coefficients. Let
now analyze in detail each of the virial coefficients. T
second virial coefficient decreases slightly as the molec
flexibility increases. Since the second virial coefficient is
measure of the volume excluded to a second molecule by
presence of the first molecule, it can be concluded that r
linear molecules present a greater excluded volume t
flexible ones. For hard convex bodies the second virial co
ficient is given exactly by the equation@46#

B2* 5113a, ~6!

where a is the parameter of nonsphericity which can
evaluated from geometrical considerations. For hard sph
a51; for all other hard convex bodiesa.1. In other words,
the more ‘‘nonspherical’’ a body is, the larger its value ofa
and hence ofB2* is. The molecules considered in this wo
are nonconvex, thus Eq.~6! no longer holds; however, it ca
be used to explain, in a general fashion, the results of Ta
I for B2* . These results indicate that in the isotropic pha
the molecules become more spherical as the flexibility of
molecule increases.

ConcerningB3* one can observe that the introduction
flexibility slightly changes its value~we see an increase o
about 4% with flexibility! though the third virial coefficient
seems to be less sensitive to the introduction of flexibi
than the second and the fourth virial coefficients. That
also been noted by Vegaet al. @47# for tangent hard spher
models.

We find a dramatic change inB4* with the introduction of
flexibility. From Table I we see thatB4* changes from nega
tive to positive values as the molecule becomes more fl
ible. Negative values of the fourth virial coefficient are com
mon for highly prolate molecules@48,49#. Therefore the
negative values found for the 1510 and 1411 models are
not surprising. Previously this has been attributed to
dominance of the ‘‘modified star graph’’ in the Ree a
Hoover formulation@48#.

In summary the results of Table I show that the vir
coefficients are affected by the Introduction of flexibility
the molecular model. The third and especially the fou
virial coefficients increase as the molecule becomes m
flexible, while the second virial coefficient decreases.

It was mentioned in the Introduction of this paper th
Wertheim@36# and Chapmannet al. @37# have proposed an
EOS for chains of tangent hard sphere fluids. The EOS
tained in this way, denoted usually as TPT1, predicts that
EOS and hence the virial coefficients are independent of
presence or absence of molecular flexibility. This equat
reads

Z5
p

rkT
5m

11y1y22y3

~12y!3
2~m21!

11y2
y2

2

~12y!S 12
y

2D ,

~7!
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wherem is the number of tangent hard spheres forming
chain. From this equation one can obtain expressions for
second, third, and fourth virial coefficients@50#

B2*
,TPT151.5m12.5, ~8!

B3*
,TPT157.25m12.75, ~9!

B4*
,TPT1515.125m12.875. ~10!

Although Eq.~7! is designed for a tangent hard sphere cha
Zhou and co-workers@38# have developed an expression f
an effective number of monomer units,meff , which allows
TPT1 to be applied to models of fused hard sphere cha
for L* >0.5. This is given by

meff5
@11~m21!L* #3

@11~m21!L* ~32L* 2!/2#2
. ~11!

From Eq. ~11! for the model described in this pape
~RFFFHS withm515) me f f'5.6843, which gives

B2*
,TPT1'11.02, ~12!

B3*
,TPT1'43.96, ~13!

B4*
,TPT1'88.85. ~14!

From a comparison with the results from this study~Table I!
we see that TPT1 underestimatesB2* and B3* and overesti-
matesB4* . The lack of reference to molecular flexibilit
within TPT1 means that these values are invariant with
spect to the changes in the flexibility that we introduce in o
model. To summarize TPT1 is not able to capture the su
changes occurring in the virial coefficient when molecu
flexibility is introduced into the model.

Let us now present results forZ at low densities. In Fig. 2
the compressibility factorZ is shown as a function ofy for
volume fractions up to 0.2. The results presented were
tained from the virial expansion truncated atB4, from TPT1,
and from computer simulations of this work. Results cor
spond to two models, namely 1510 and 1114. As can be
seen the virial expansion reproduces the simulation res
rather well, whereas TPT1 fails in describing the low dens
region. The virial expansion correctly reproduces the sligh
smaller value ofZ for the 1510 model with respect to the
1114 model. One can summarize by saying that althou
virial coefficients are significantly affected by the introdu
tion of flexibility the increases in the third and fourth viria
coefficients are offset by the decrease in the second v
coefficient, hence we see little change in the virial expans
between each of the models. At higher packing fractionsy
.0.20), the truncated virial expansion significantly under
timates the compressibility factor. The inclusion of high
virial coefficients would be required in order to provide
better description of the higher density region.
3-5
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B. The medium density region

We shall now present results for the isotropic phase
medium densities~namely those withy.0.20). In Fig. 3 the
EOS in the isotropic region as obtained from TPT1 and fr
the simulation results of this work are plotted. As can
seen TPT1 performs very well in this region. In fact at m
dium densities~in the isotropic phase! TPT1 correctly pre-
dicts that the EOS is hardly affected by the introduction
molecular flexibility.

The success of TPT1 in the isotropic phase at med
densities strongly suggests that this theory could be used

FIG. 2. Monte Carlo results~compressibility factor versus vol
ume fraction! of the RFFFHS models~symbols! in the low density
region of the isotropic phase;j, 1114 ~isotropic!; c, 1510 ~iso-
tropic!. The equation of state obtained from the virial expansion
also presented, 1114 virial expansion~dotted line!, 1510 virial
expansion~dashed line!. The solid line represents the TPT1 EO
using the Zhouet al. @38# ‘‘correction’’.

FIG. 3. Monte Carlo results@reduced pressurep* 5ps3/(kT)
versus volume fraction# for the EOS of the RFFFHS models in th
isotropic phase at medium densities~symbols!. Results correspond
to 1, 817; 3, 916; *, 1015; h, 1114; j, 1312; ands, 1510.
The dashed line represents the TPT1 EOS using the Zhouet al.
‘‘correction’’.
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theoretical treatments concerning the isotropic-nematic tr
sition. This has been illustrated by Williamson and Jacks
@9# for fully rigid tangent hard spheres. We feel that th
theory could be extended to the RFFFHS model by num
cal or analytical@11# calculation of the excluded volume.

IV. THE ISOTROPIC-NEMATIC TRANSITION

In this section we shall focus on the results for t
isotropic-nematic transition. This section will be divided in
three sections. In Sec. IV A results for fully rigid models w
be presented, namely the 1510 and the 1110. In Sec. IV B
we shall analyze the effect of adding a flexible tail. To
this we shall compare the results for the 1110 model with
the 1114 model. Finally, in Sec. IV C we shall analyze th
effect of introducing flexibility and present the results for t
1510, 1312, 1015, 916, and 817 models.

A. Isotropic-nematic transition of fully rigid models

First we shall present the results for the 1110 and 15
10 models. Results for the 1110 model are given in Table
II and the results for the 1510 model are given in Table III
for N5108 and in Table IV forN5500. In all the cases
reported results correspond to compression runs.

On compression of the isotropic phase a nematic ph
spontaneously forms at a packing fraction ofy'0.33 for the
1110 model~Table II!. For the 1510 model the phase tran
sition occurred at a packing fraction ofy'0.28. Whittle and
Masters found a nematic phase for the 810 model aty
50.42. Obviously as the molecule becomes more elonga
the isotropic-nematic transition occurs at lower volume fra
tions. This is also found for hard ellipsoids, hard spheroc
inders, and other hard bodies.

s

TABLE II. Equation of state for the 1110 model fromNpT MC
simulations. The reduced pressurep* is defined as p*
5ps3/(kT), Z stands for the compressibility factor,y for the vol-
ume fraction,S2 for the order parameter. The different phases ha
been labeled asI ~isotropic!, N ~nematic!, and Sm~smectic!.

p* y Z S2 Phase

0.10 0.138 3.37 0.10 I
0.20 0.191 4.89 0.09 I
0.40 0.255 7.34 0.08 I
0.50 0.277 8.43 0.19 I
0.60 0.296 9.45 0.12 I
0.65 0.306 9.92 0.15 I
0.70 0.319 10.26 0.09 I
0.75 0.333 10.52 0.58 N
0.80 0.346 10.80 0.66 N
0.85 0.354 11.22 0.77 N
0.90 0.368 11.43 0.73 N
0.95 0.376 11.80 0.81 N
1.00 0.386 12.09 0.87 N
1.05 0.393 12.47 0.85 N
1.10 0.400 12.86 0.90 N
1.15 0.426 12.60 0.96 N
3-6
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It is interesting to compare the densities at which the ne
atic phase forms for the RFFFHS model considered in
work with the densities at which the nematic phase forms
other hard bodies, such as spherocylinders@7# or linear tan-
gent hard spheres@9#. A comparison is made in Table V fo
models having the same length-to-breadth ratio. Let us s
by comparing spherocylinders with the model of this wo
Spherocylinders are found to form a nematic phase at hig
volume fractions than the model used in this study. This
true for the two length-to-breadth ratios presented in Ta
V. This is a consequence of the fact thatB2* of spherocylin-
ders is lower thanB2* of the RFFFHS model having the sam
length-to-breadth ratio. The nonconvex character of
model of this work means that a sphere sliding on the surf
of the molecule cannot efficiently penetrate the cavities
tween two monomer sites@45#. This is not the case for the
spherocylinder where a sphere can slide easily over the
face of the spherocylinder. This is reflected in the values
B2* . Also in Table V the results for linear tangent ha
spheres are presented. As can be seen the results of this
are in fair agreement with those reported by Williamson a
Jackson. We conclude that the phase behavior of mo
presented in this work lies between that of the linear tang
hard sphere model and the spherocylinder model. Notice
by keeping the length-to-breadth ratio constant and incre
ing the number of spheres of the model~and correspondingly
reducing the bond length! the model of this work should ten

TABLE III. Equation of state for the 1510 model fromNpT
MC simulations~108 molecules!. The notation is as in Table II.

p* y Z S2 Phase

0.02256 0.067 2.10 I
0.07652 0.129 3.74 I
0.18233 0.193 5.95 I
0.30 0.240 7.90 0.13 I
0.35 0.276 8.01 0.78 N
0.40 0.296 8.52 0.81 N
0.45 0.314 9.04 0.88 N
0.50 0.332 9.52 0.90 N
0.55 0.345 10.07 0.89 N
0.60 0.359 10.56 0.92 N
0.65 0.379 10.83 0.95 N
0.70 0.382 11.58 0.95 N
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to the spherocylinder limit. The way in which the spheroc
inder limit is obtained from models of hard spheres has b
considered in more detail by Jaffer, Opps, and Sullivan@11#.

In this work we have not made a systematic study of
influence of system size dependence on the results. The
model for which larger systems were considered was
1510 model. The results of this model forN5108 andN
5500 are shown in Fig. 4. We do not observe any signific
differences in the EOS in the isotropic phase.

In both systems a nematic phase is formed spontaneo
although it appears at slighter higher densities for the sys
with N5500. This shift of the phase transition to a slight
higher density is expected since the phase transition oc
when orientational correlations are commensurate with
dimensions of the simulation box, which are slighty larg
for the 500 molecule system. In the nematic phase we do
observe any significant differences in the EOS between
two systems. For densities higher thany.0.41 we observe
that the system withN5108 is attempting to form a smecti
phase~identified by analyzing the snapshots of the syst
and by a kink in the EOS!, but the size of the system pre
vents the formation of a conclusive smectic phase. Wh
compressing the system withN5500 a smectic-A phase

TABLE IV. Equation of state for the fully rigid 1510 model
from NpT MC simulations~500 molecules!. The notation is as in
Table II.

p* y Z S2 Phase

0.10 0.147 4.31 0.05 I
0.25 0.219 7.24 0.08 I
0.35 0.255 8.68 0.08 I
0.45 0.297 9.60 0.75 N
0.50 0.332 9.54 0.84 N
0.55 0.346 10.06 0.87 N
0.60 0.359 10.58 0.89 N
0.65 0.370 11.13 0.90 N
0.70 0.376 11.78 0.92 N
0.75 0.392 12.09 0.93 N
0.80 0.401 12.61 0.94 N
0.85 0.418 12.86 0.95 N
0.90 0.425 13.40 0.96 N
0.95 0.441 13.62 0.97 Sm-A
1.00 0.465 13.61 0.96 Sm-A
, the
model
TABLE V. Packing fractions at which the isotropic-nematic transition occurs for spherocylinders
model of this work, and the rigid tangent linear hard sphere model. The length-to-breadth ratio of the
is denoted asg.

Model Study g I -N transition

Spherocylinder Bolhuis and Frenkel@7# 9.4 0.29<y<0.32
Our model 1510 9.4 0.26<y<0.29
Spherocylinder Bolhuis and Frenkel@7# 7.0 0.36<y<0.37
Our model 1110 7.0 0.32<y<0.33
THS Wiliamson and Jackson@9# 7.0 0.303<y<0.312~on compression!
THS Wiliamson and Jackson@9# 7.0 0.285<y<0.304~on expansion!
3-7
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spontaneously forms aty.0.43. This is more clearly illus-
trated by showing a snapshot of the system~Fig. 5!.

In summary the influence of system size in the EOS of
isotropic and nematic phases is quite small and the sam
true for the isotropic-nematic transition. However, syst
size effects are important when considering the nema
smectic transition. Although the system withN5108 gives
some indications of a transition to a smectic phase only
larger system withN5500 formed a truly smectic phase. W
shall describe our results for smectic phases as being pre
nary.

FIG. 4. The equation of state from the MC simulations.s,
1510 500 molecules~isotropic!; h, 1510 500 molecules~nem-
atic!; l, 1510 500 molecules~smectic!; *, 1510 108 molecules
~isotropic!; 3, 1510 108 molecules~nematic!. The curve repre-
sents the TPT1 EOS using the Zhouet al. correction.

FIG. 5. A snapshot of the 1510 model in the smectic-A phase
for a system of 500 molecules.
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i- B. Adding a flexible tail

We shall now analyze the effect of adding a flexible tail
the 1110 model. In particular we shall consider the 1114
model in which a tail consisting of four monomer units
added to the rigid core of 11 monomers. In principle o
would expect that the addition of a flexible tail would hind
liquid crystal phase formation; fully flexible models do n
have liquid crystal phases at all. However, due to the bo
length constraintL* 50.6 and the condition of no intramo
lecular overlap the tail is not as flexible as it may first appe
In fact each flexible bond can deviate only 67° from t
direction of the previous bond to avoid overlap between s
n and siten22. Therefore, linear configurations are still po
sible and it is not clear whether the main effect of adding
tail is to increase the overall molecular elongation thus m
ing the formation of the liquid crystal phase easier.

The simulations results for the 1114 model are presente
in Table VI. It can be seen that a nematic phase is forme
y'0.37. Since for the 1110 model the nematic phase
formed aty'0.33 one concludes that the addition of a fle
ible tails moves the isotropic-nematic transition to high
densities. The effect is important. Therefore the addition o
flexible tail makes the nematic phase less stable. In Table
results for the square root of the mean squared end-to
distance,̂ R2&1/2, are also shown. Structural changes are

TABLE VI. Equation of state for the 1114 model fromNpT
MC simulations~compression runs!. The notation is as in Table II
The square root of the average squared end-to-end distance i
noted aŝ R2&1/2 and is given ins units. The notationN/Sm indi-
cates that the transition from the nematic to the smectic phas
taking place.

p* y Z S2 ^R2&1/2 Phase

0.02260 0.067 2.12 7.2052 I
0.07652 0.130 3.72 7.1969 I
0.18233 0.190 6.05 7.1914 I
0.37136 0.253 9.25 7.1949 I
0.70 0.315 14.04 0.15 7.2269 I
0.80 0.328 15.43 0.11 7.2217 I
0.85 0.339 15.84 0.05 7.2237 I
0.90 0.345 16.51 0.13 7.2391 I
0.95 0.350 17.16 0.25 7.2407 I
1.00 0.363 17.42 0.35 7.2941 I
1.05 0.373 17.80 0.76 7.3557 N
1.10 0.380 18.28 0.68 7.3746 N
1.15 0.384 18.94 0.79 7.3531 N
1.20 0.390 19.47 0.74 7.3641 N
1.25 0.396 19.95 0.70 7.3660 N
1.30 0.408 20.16 0.70 7.4200 N/Sm
1.35 0.415 20.56 0.78 7.4298 N/Sm
1.40 0.422 20.95 0.76 7.4283 N/Sm
1.45 0.434 21.11 0.79 7.4278 N/Sm
1.50 0.438 21.64 0.77 7.4494 N/Sm
1.55 0.444 22.05 0.80 7.4299 Sm
1.60 0.449 22.50 0.81 7.4596 Sm
1.65 0.453 23.02 0.82 7.4639 Sm
3-8
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served when going from the isotropic to the nematic pha
In particular an increase is seen in the end-to-end dista
when moving to the nematic phase. This is more clearly s
in Fig. 6 wherê R2&1/2 is shown as a function of the densi
for the 1114 model.

The increases in̂R2&1/2 correspond to a preference for
more linear configuration in the nematic phase. The tails t
to be aligned with the nematic director in the nematic pha
This effect has been noted in previous studies@31#.

In Fig. 7 the EOS for the 1114 and the 1110 models are
compared. The shift of the isotropic-nematic transition
higher densities is clearly seen. For the 1114 system we
observe a stable nematic phase for volume fractions in
range 0.37,y,0.41. However, for higher densities the sy
tem forms a smectic phase. Smectic phases were ident
by graphical visualization. A kink is observed in the EOS

FIG. 6. A plot of the mean end-to-end length~in s units! against
packing fraction for the 1114 model.

FIG. 7. The equation of state from the MC simulations. *, 1114
~isotropic!; h, 1114 ~nematic!; j, 1114 ~smectic!; 1, 1110 ~iso-
tropic!; 3, 1110 ~nematic!. The dotted curve represents the TPT
EOS for the 1510 RFFFHS model using the Zhouet al.correction.
The dot-dashed curve represents the TPT1 EOS for the 110
RFFFHS model using the Zhouet al. correction.
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y'0.41. Although our results for smectic phases are preli
nary due to the small size of our system (N5108), there is
strong indication of formation of a smectic phase for t
1114 system wheny.0.41. In the observed smectic phas
the rigid cores form layers, whereas the flexible tails fill t
space between the layers. This is similar to the beha
found by Duijneveldt and Allen for spherocylinders whic
have ideal tails@33#.

We find that the range for which a nematic phase is sta
is much smaller in the 1114 model than in the 1110 model
for two reasons. First because the isotropic-nematic tra
tion has moved to higher densities. Secondly because
nematic-smectic transition seems to be moving to lower d
sities when the flexible tails are added. To summarize:
addition of flexible tail shifts the isotropic-nematic transitio
to higher densities, and stabilizes the smectic phase,
significantly reducing the range of densities where the ne
atic phase is stable.

C. Introducing flexibility

We shall now analyze the changes that occur when mo
mers of a fully rigid model become flexible. We shall sta
from the 1510 model and will change the lastmf monomers
of the model to allow for flexibility.

Let us start with the limiting case. Since fully flexibl
chains do not form liquid crystal phases one may expect
when mf is large enough no liquid crystal phase would
observed. In the 817 model the length-to-breadth ratio of th
rigid core is about 5s. The anisotropy of the rigid core is
still significant. Whittle and Masters observed a nema
phase for the 810 model. In Table VII the EOS for the 817
as obtained from compression runs is presented. It can
seen that even for volume fractions as high asy50.48 the
system remains in the isotropic phase. No nematic phas
formed when compressing this system. For the highest d
sities the fluid configurations, although isotropic, are
glassy character indicating the vicinity of the fluid-solid tra
sition. The conclusion then is that when a sufficient num
of the monomers in the chain are flexible the liquid crys
phase disappears completely from the phase diagram. O
ously one would anticipate the same results for the mod
with mf.7. What happens when the number of flexib
monomers is small and the rigid region of the molecu
is big ?

Let us start with the results for the 1312 model. Results
from compression runs from the isotropic fluid are presen
in Table VIII. It can be seen that a nematic phase is spon
neously formed at a volume fraction of abouty50.33. We
also performed expansion runs. The expansion runs w
performed as follows. We started from a nematic configu
tion of the 1510 model withy50.35. Then we introduced
the flexible tails, with half of the molecules having the tail u
and half of the molecules having the tail down~with respect
to the nematic director!. Several long runs are then pe
formed to allow the system to equilibrate at this densi
Then, taking this equilibrated configuration as the init
state, several runs were performed by slowly decreasing
pressure. Another set of runs were launched from the in
3-9
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configuration by slowly increasing the pressure. Results
tained in this way are presented in Table IX. The line div
ing the results in Table IX separates the compression f
the expansion runs. By decreasing the pressure we obse
a nematic-isotropic transition fory'0.31. The existence o
hysteresis loops~i.e., the nematic phase is obtained by co
pression at slightly higher densities than the densities
which the isotropic phase appears by expansion! is usual in
first-order phase transitions. Therefore the 1312 system pre-
sents an isotropic-nematic transition at volume fractions
abouty'0.32. Taking into account that the nematic phase
the 1510 models appears for volume fractions of abouty
'0.28 we see that the effect of introducing a flexible tail
to shift the transition to higher densities. When compress
the nematic phase a smectic phase appears for volume

TABLE VII. Equation of state for the 817 model fromNpT
MC simulations~compression runs!. The notation as in Tables I
and VI.

p* y Z S2 ^R2&1/2 Phase

1.95 0.414 29.79 0.27 6.0304 I
2.00 0.420 30.12 0.09 6.0534 I
2.05 0.420 30.90 0.17 6.0111 I
2.10 0.424 31.33 0.21 6.0059 I
2.15 0.427 31.90 0.23 5.9603 I
2.20 0.429 32.45 0.20 5.9585 I
2.25 0.430 33.09 0.10 6.0020 I
2.30 0.434 33.58 0.16 5.9735 I
2.35 0.437 34.03 0.14 5.9721 I
2.40 0.441 34.42 0.13 6.0326 I
2.45 0.442 35.05 0.16 6.0656 I
2.50 0.443 35.73 0.15 6.0146 I
2.55 0.445 36.25 0.17 6.0063 I
2.65 0.452 37.11 0.20 6.1276 I
2.70 0.455 37.58 0.20 5.9808 I
2.75 0.457 38.10 0.23 5.9987 I
2.80 0.458 38.73 0.34 5.9713 I
2.85 0.464 38.91 0.37 6.0630 I
2.90 0.466 39.41 0.24 6.1981 I
2.95 0.467 39.94 0.25 6.1039 I
3.00 0.470 40.42 0.14 6.0256 I
3.05 0.472 40.93 0.21 6.0793 I
3.10 0.471 41.63 0.23 6.1319 I
3.15 0.473 42.15 0.16 6.1019 I
3.20 0.479 42.31 0.14 6.1787 I

TABLE VIII. Equation of state for the 1312 model fromNpT
MC simulations~compression runs!. The notation is as in Tables I
and VI.

p* y Z S2 ^R2&1/2 Phase

0.55 0.297 11.72 0.20 7.9590 I
0.60 0.306 12.42 0.12 7.9572 I
0.65 0.331 12.43 0.83 7.9965 N
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tions of abouty50.42. Our simulations show that the 1312
model has a stable nematic phases for volume fraction
the range 0.32,y,0.42.

We now move on to the 1015 system. In Table X results
obtained by compression of the isotropic fluid phase are p
sented. A nematic phase is formed aty'0.39 ~for the 1510
model the nematic phase appears fory'0.28). Therefore
introducing a flexible tail of five monomer units moves th
isotropic-nematic transition to much higher densities. T
mirrors the trend already observed for the 1312 model and

TABLE IX. Equation of state for the 1312 model fromNpT
MC simulations~expansion and compression runs seeded from
nematic configuration!. The notation is as in Tables II and VI. Th
line dividing the results in the table divides the compression fr
the expansion runs.

p* y Z S2 ^R2&1/2 Phase

0.02260 0.067 2.11 7.9464 I
0.07652 0.130 3.71 7.9459 I
0.18233 0.192 5.98 7.9460 I
0.37136 0.255 9.19 7.9503 I
0.50 0.283 11.14 0.11 7.9517 I
0.55 0.307 11.32 0.48 7.9775 N
0.60 0.317 11.96 0.62 7.9786 N
0.65 0.336 12.22 0.78 8.0023 N
0.70 0.344 12.85 0.82 8.0054 N

0.80 0.361 14.01 0.82 8.0160 N
0.85 0.374 14.36 0.84 8.0194 N
0.90 0.380 14.95 0.90 8.0253 N
0.95 0.393 15.28 0.90 8.0315 N/Sm
1.00 0.409 15.46 0.95 8.0268 N/Sm
1.05 0.423 15.69 0.96 8.0368 N/Sm
1.10 0.429 16.22 0.96 8.0344 N/Sm
1.15 0.433 16.78 0.94 8.0383 N/Sm
1.20 0.444 17.06 0.96 8.0383 Sm-A

TABLE X. Equation of state for the 1015 model fromNpT
MC simulations~compression runs!. The notation is as in Tables I
and VI.

p* y Z S2 ^R2&1/2 Phase

1.05 0.356 18.65 0.20 6.8092 I
1.10 0.361 19.25 0.11 6.7993 I
1.15 0.365 19.95 0.11 6.8036 I
1.20 0.373 20.37 0.15 6.8270 I
1.25 0.379 20.89 0.16 6.8340 I
1.30 0.384 21.41 0.36 6.8514 I
1.35 0.386 22.14 0.41 6.8717 N
1.40 0.395 22.58 0.45 6.9197 N
1.45 0.404 22.45 0.46 6.9460 N
1.50 0.406 23.38 0.55 6.9379 N
1.55 0.415 23.63 0.67 6.9925 N
1.60 0.418 24.23 0.80 7.0466 N/Sm
1.65 0.435 23.98 0.79 7.1019 Sm
3-10
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is confirmed by the 1015 model. A snapshot of the nemat
phase formed is given in Fig. 8. This snapshot was obtai
from compression of the isotropic fluid.

It can be seen that the tails are up and down with resp
to the nematic director direction. When compressing
nematic phase of the 1015 model some indications of th
formation of a smectic phase fory50.42 are observed. In
summary, for the 1015 model the stability range of the nem
atic phase seems to be quite small, 0.39,y,0.42.

Let us now focus on the last model considered in t
work. This is the 916 model. This model is interesting fo
two reasons. First because it is sandwiched between the17
which, as discussed previously, has no liquid crystal pha
and the 1015 which does present liquid crystal phases. It
not clear whether the 916 model will or will not exhibit
liquid crystal behavior. Second, even assuming that the 916
model has liquid crystal phases it is not clear whether it w
or will not have a stable nematic phase. Taking into acco
the narrow range of stability of the nematic phase for
1015 model the possibility of going directly from the flui
to a smectic phase appears as a possible scenario.

In Table XI the EOS as obtained by compression of
isotropic phase is presented. A nematic phase is form
spontaneously fory50.435. We also perform a second typ
of run; starting from a smectic configuration of the 1015
model withy50.44 we switched to the 916 model. Several
runs were then performed to equilibrate the initial config
ration. We then performed a series of expansion and c
pression runs. Results from these runs are shown in T
XII. It was found from these runs that the smectic phase w
stable up to the pressure at which it spontaneously tra
forms into an isotropic fluid. In Fig. 9 the results from th
compression and expansion runs are shown. It can be
there is no agreement between the results of the compres
~starting from an isotropic configuration! and those of the
runs which were seeded from a smectic configuration. Th
not just a hysteresis loop. The discrepancy arises becaus
ordered phase obtained by compression and the ord

FIG. 8. A snapshot of the 1015 model in the nematic phase fo
a system of 108 molecules.
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phase from the expansion runs are different. In fact a nem
phase is obtained by compression whereas in the expan
runs the ordered phase is a smectic one. For a certain de
the pressure of the smectic phase is lower than that of
nematic phase. That suggests that the smectic phase ca
deed be more stable than the nematic phase for the16
model. The results of this work strongly suggest that
nematic phase does not appear for the 916 model. Instead
we suggest that a direct isotropic-smectic transition may

TABLE XI. Equation of state for the 916 model fromNpT MC
simulations~compression runs!. The notation is as in Tables II an
VI.

p* y Z S2 ^R2&1/2 Phase

1.35 0.377 22.65 0.11 6.3759 I
1.40 0.381 23.25 0.15 6.3334 I
1.45 0.387 23.72 0.22 6.3589 I
1.50 0.390 24.33 0.21 6.3864 I
1.55 0.396 23.76 0.27 6.3705 I
1.60 0.402 25.17 0.29 6.4489 I
1.65 0.407 25.65 0.37 6.4744 I
1.70 0.409 26.28 0.24 6.4670 I
1.75 0.414 26.76 0.28 6.4412 I
1.80 0.413 27.60 0.18 6.4146 I
1.85 0.415 28.20 0.32 6.4593 I
1.90 0.417 28.82 0.15 6.4337 I
1.95 0.423 29.14 0.18 6.4038 I
2.00 0.422 30.03 0.17 6.4810 I
2.05 0.428 30.29 0.33 6.4626 I
2.10 0.435 30.56 0.48 6.4801 N
2.15 0.440 30.93 0.45 6.5273 N
2.20 0.443 31.46 0.43 6.5717 N
2.25 0.449 31.71 0.63 6.5663 N

TABLE XII. Equation of state for the 916 model fromNpT
MC simulations~expansion and compression runs seeded from
smectic configuration!. The notation is as in Tables II and VI. Th
line dividing the results in the Table divides the compression fr
the expansion runs.

p* y Z S2 ^R2&1/2 Phase

1.75 0.423 26.17 0.65 6.6935 Sm
1.80 0.431 26.46 0.66 6.7552 Sm
1.85 0.429 27.29 0.62 6.6516 Sm
1.90 0.435 27.66 0.70 6.6542 Sm
1.95 0.438 28.19 0.73 6.7567 Sm

2.00 0.446 28.39 0.70 6.7417 Sm
2.05 0.445 29.15 0.65 6.7371 Sm
2.10 0.447 29.72 0.62 6.6853 Sm
2.15 0.453 30.04 0.73 6.7576 Sm
2.20 0.454 30.70 0.67 6.6961 Sm
2.25 0.456 31.20 0.68 6.7302 Sm
2.30 0.458 31.75 0.68 6.7052 Sm
3-11
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cur, the nematic phase being completely destabilized for
model.

Let us finish by presenting the global results obtained
models with 15 monomer units. This is done in Fig.
where the results for the 1510, 1312, 1114, 1015, 916,
and 817 are given. This figure illustrates quite clearly th
main findings of this work. The EOS of the isotropic fluid
well described by Wertheim’s TPT1 and seems to be ins
sitive to the presence or absence of molecular flexibil
However, the phase diagram is dramatically affected by
presence or absence of flexibility in the tail monomers of
model. Introducing flexibility moves the isotropic-nemat

FIG. 9. Equation of state for the 916 model.1, 916 ~isotropic,
compression run!; 3, 916 ~nematic, compression run!; *, 916
~smectic, expansion run from smectic seed configuration!. The dot-
ted curve represents the TPT1 EOS for the 1510 RFFFHS model
using the Zhouet al. correction.

FIG. 10. The equation of state from the MC simulations.1,
817 ~isotropic!; 3, 916 ~isotropic!; *, 916 ~nematic!; h, 916
~smectic!; j, 1015 ~isotropic!; (, 1015 ~nematic!; d, 1015
~smectic!; n, 1114 ~isotropic!; m, 1114 ~nematic!; ¹, 1114
~smectic!; ., 1312 ~isotropic!; L, 1312 ~nematic!; l, 1312
~smectic!; solid black pentagon 1510 ~nematic!, and the 1510
~smectic! is a bold open circle. The dotted curve represents
TPT1 EOS for the 1510 RFFFHS model using the Zhouet al.
correction. The dot-dashed line is a sketch of the nematic-sme
transition boundary.
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transition to higher densities. If the tail is long enough, as
the 817 model, then no liquid crystal phase is found at a
also the introduction of the flexible tail makes the nema
phase less stable with respect to the smectic phase. Th
fore, we found here a narrow range for the nematic phase
the 1114 and 1015 models. For the 916 the results of this
work suggest a direct transition from the isotropic to t
smectic phase. Two phases win and one phase loses w
introducing short flexible tails into a rigid model. Isotrop
and smectic phases gain further stability by the introduct
of flexibility whereas the nematic phase becomes less st
with respect to the other two. However, if the flexible tail
too long, then the smectic phase also looses stability w
respect to the isotropic and the only expected transition is
isotropic-ordered solid transition.

V. CONCLUSION

In this paper the effect of flexible tails on the isotropi
nematic transition of hard systems has been analyzed
means of Monte Carlo simulations. The model is formed
m hard spheres with reduced bond lengthL* 50.6. The first
mr monomers of the chain are rigid and adopt a linear c
figuration whereas the lastmf monomers are flexible. The
model presents symmetry since the rigid core and the flex
tails are formed by the same type of atoms. This feat
makes the RFFFHS model suitable for theoretical stud
Three problems have been addressed in this work. First,
phase transitions for two fully rigid models, the 1110 and
the 1510, have been studied. Second, the effect of addin
flexible tail of four monomer units to the 1110 model was
analyzed. Third, the effect of introducing flexibility in
model of 15 monomers has been studied. For each of th
models we have studied the EOS in the isotropic phase,
virial coefficients, and the location of the isotropic-nema
transition. Some preliminary results on the nematic-sme
transition are also reported.

In our view the main conclusions that can be drawn fro
this work can be summarized as follows.

~i! The virial coefficients are strongly affected by th
presence or absence of flexibility in the molecule. The s
ond virial coefficient decreases as the molecule beco
more flexible whereas the opposite behavior is found for
third, and especially for the fourth, virial coefficients.

~ii ! The extension of Wertheim’s TPT1 EOS proposed
Zhouet al. @38# incorrectly describes the low density beha
ior of the models considered in this work. However, th
EOS performs quite well in the medium density region of t
isotropic phase. The simulation results of this work illustra
how flexibility hardly affects the equation of state in th
isotropic phase of these models at medium densities in ag
ment with the predictions of TPT1.

~iii ! Flexibility dramatically changes the appearance
the phase diagram of hard models. The flexibility plays
major role in determining the location of the liquid cryst
phases.

~iv! Fully rigid linear models with 11 or 15 monome
units form nematic and smectic phases. The density of
isotropic-nematic transition moves to lower densities as

e

tic
3-12
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chain becomes more anisotropic.
~v! Adding a flexible tail to a rigid model of 11 monome

shifts the isotropic-nematic transition to much higher pr
sures and densities. Therefore the addition of tails make
nematic phase much less stable. The configurations ado
by the tail in the isotropic and in the nematic phase
slightly different. In the nematic phase the tails tend to al
with the direction of the nematic director.

~vi! Introducing flexibility in a model of 15 monome
units shifts the location of the isotropic-nematic transition
higher densities and pressures. In addition to that our res
suggest that smectic phases become more stable by th
troduction of flexible tails. Therefore the range of stability
the nematic phase shrinks when flexibility is introduced
the model.

~vii ! When the number of monomer units of the flexib
tail is too large then no liquid crystal phase is found at a
Too much flexibility prevents the formation of liquid cryst
phases.

Since the model used in this work is relatively simple, a
taking into account the good description of the EOS of
isotropic phase provided by TPT1 we believe that a theo
ical description of the transitions found in this work is po
sible. We indeed hope that the results of this paper encou
further theoretical work in the area. In addition to this t
model can be easily modified to allow for two flexible ta
~one at each extreme of the molecule! or even for studying
liquid crystal formation in polymer systems~by alternating
flexible and rigid sections in a long chain!.

To complete the phase diagram of the models presente
this work further work is needed. This is especially true
the solid phases~which were not considered in this work!
and for the smectic phases. Our results concerning sme
phases are at this point preliminary due to the small size
the system. Concerning the solid it is relatively simple
.
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ys

01170
-
he
ted
e
n

lts
in-

.

d
e
t-

ge

in
r

tic
of

generate the close packing structure of the models of
work, taking as a reference the close packed structure of h
dumbbells@51,52#. The study of solid phases would certain
require nonisotropicNpT simulations. For studying in more
detail the smectic phase, besides nonisotropicNpT simula-
tions, larger systems and defect free initial configurations
required. We plan to study these transitions in a future wo

Models composed of chains formed from hard sphe
~either tangent or overlapping! have become quite popular i
the study of flexible molecules. This has been so since
seminal work by Wertheim@36# and Chapmannet al. @37#,
and the simulations of Honnell and Hall@24#, Dickman@25#,
and Dickman and Hall@26#. Here we show that this type o
model can also be quite interesting in the study
mesophases for models which combine rigid and flexi
sections.

We should, however, mention that for more realistic mo
els, such as models that incorporate bond angles and e
cially torsional potentials, the effect of flexible tails on th
isotropic-nematic transition will not be so drastic. Mode
that include a torsional potential in the flexible tail~s! are
much more inclined to form in the all-trans configuration
@31#. In our simulations it is not unusual to find a tail curle
up on its self, whereas this conformation is rarely found
more ‘‘realistic’’ simulations.
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