|  |  | 
| Line 66: | Line 66: | 
|  | 
 |  | 
 | 
|  | <math> |  | <math> | 
|  | p = - \left( \frac{ \partial A}{\partial L} \right)_{N,T} = |  | p = - \left( \frac{ \partial A}{\partial L} \right)_{N,T} = k_B T \frac{ N}{L - N \sigma}; | 
|  | </math> |  | </math> | 
|  |  |  | 
|  |  | <math> | 
|  |  | Z = \frac{p L}{N k_B T} = \frac{1}{ 1 - \eta},  | 
|  |  | </math> | 
|  |  |  | 
|  |  | where <math> \eta \equiv \frac{ N \sigma}{L} </math>; is the franction of ''volume'' (length) occupied by the rods. | 
|  |  |  (len | 
|  | 
 |  | 
 | 
|  | ==References== |  | ==References== | 
		Revision as of 12:10, 27 February 2007
Hard Rods, 1-dimensional system with hard sphere interactions.
The statistical mechanics of this system can be solved exactly (see Ref. 1).
Canonical Ensemble: Configuration Integral
Consider a system of length  defined in the range
 defined in the range ![{\displaystyle \left[0,L\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4d989db4732ced308e9b4e495dfbaf0dd2bd5d6) .
.
Our aim is to compute the partition function of a system of  hard rods of length
 hard rods of length  .
.
Model:
- External Potential; the whole length of the rod must be inside the range:
 
 
where  is the position of the center of the k-th rod.
 is the position of the center of the k-th rod.
Consider that the particles are ordered according to their label:  ;
; 
- taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of  particles as: particles as:
 
Variable change:  ; we get:
 ; we get:
 
Therefore:
 
 
Thermodynamics
Helmholtz energy function
 
In the thermodynamic limit (i.e.  with
 with  ,  remaining finite):
,  remaining finite):
![{\displaystyle A\left(N,L,T\right)=Nk_{B}T\left[\log \left({\frac {N\Lambda }{L-N\sigma }}\right)-1\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a3e69427cc1e3db932ca4534de09c9fca9d0b31f) 
Equation of state
From the basic thermodynamics, the pressure  [linear tension in this case]  can
be written as:
 can
be written as:
 
 
where  ; is the franction of volume (length) occupied by the rods.
; is the franction of volume (length) occupied by the rods.
(len
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)