|  |  | 
| Line 58: | Line 58: | 
|  | : <math> \left. A(N,L,T) = - k_B T \log Q \right. </math> |  | : <math> \left. A(N,L,T) = - k_B T \log Q \right. </math> | 
|  | 
 |  | 
 | 
|  | In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = N/L </math> remaining finite(: |  | In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = \frac{N}{L} </math>,  remaining finite): | 
|  | 
 |  | 
 | 
|  | : |  | :<math>  A \left( N,L,T \right) = - N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right)  - 1 \right]. </math> | 
|  | 
 |  | 
 | 
|  | ==References== |  | ==References== | 
		Revision as of 11:55, 27 February 2007
Hard Rods, 1-dimensional system with hard sphere interactions.
The statistical mechanics of this system can be solved exactly (see Ref. 1).
Canonical Ensemble: Configuration Integral
This part could require further improvements
Consider a system of length  defined in the range
 defined in the range ![{\displaystyle \left[0,L\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4d989db4732ced308e9b4e495dfbaf0dd2bd5d6) .
.
Our aim is to compute the partition function of a system of  hard rods of length
 hard rods of length  .
.
Model:
- External Potential; the whole length of the rod must be inside the range:
 
 
where  is the position of the center of the k-th rod.
 is the position of the center of the k-th rod.
Consider that the particles are ordered according to their label:  ;
; 
- taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of  particles as: particles as:
 
Variable change:  ; we get:
 ; we get:
 
Therefore:
 
 
Thermodynamics
Helmholz energy function
 
In the thermodynamic limit (i.e.  with
 with  ,  remaining finite):
,  remaining finite):
![{\displaystyle A\left(N,L,T\right)=-Nk_{B}T\left[\log \left({\frac {N\Lambda }{L-N\sigma }}\right)-1\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de87795e75e9353cb674e04fd329f9b26e4b2d26) 
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)