|  |  | 
| Line 44: | Line 44: | 
|  | * Now considering the thermodynamical potential: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math> |  | * Now considering the thermodynamical potential: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math> | 
|  | 
 |  | 
 | 
|  | :<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - N_2 d \left( \beta \mu_{21} \right). |  | :<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - i | 
|  |  | \sum_{i=2}^c N_i d \left( \beta \mu_{i1} \right). | 
|  | </math> |  | </math> | 
|  | 
 |  | 
 | 
		Revision as of 10:14, 7 September 2007
General features
Semi-grand ensembles are used in Monte Carlo simulation of mixtures. In these ensembles the total number of molecules is fixed, but the composition can change.
Canonical ensemble: fixed volume, temperature and number(s) of molecules
We shall consider a system consisting of c components;. 
In the canonical ensemble, the differential
equation energy for the Helmholtz energy function can be written as:
 , ,
where:
Semi-grand ensemble at fixed volume and temperature
Consider now that we wish to consider a system with fixed total number of particles,  
 ; ;
but the composition can change, from thermodynamic considerations one can apply a Legendre transform [HAVE TO CHECK ACCURACY]
to the differential equation written above in terms of  .
. 
- Consider the variable change  i.e.: i.e.: 
 
 
or,
 
where  .
.
- Now considering the thermodynamical potential:  
![{\displaystyle d\left[\beta A-\sum _{i=2}^{c}(\beta \mu _{i1}N_{i})\right]=Ed\beta -\left(\beta p\right)dV+\beta \mu _{1}dN-i\sum _{i=2}^{c}N_{i}d\left(\beta \mu _{i1}\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/920f1f92deca88686eb6dca8a71d1d123aecbbf2) 
Fixed pressure and temperature
In the isothermal-isobaric ensemble:  one can write:
 one can write:
 
where:
Fixed pressure and temperature: Semi-grand ensemble
Following the procedure described above one can write:
 , ,
where the new thermodynamical Potential  is given by:
 is given by:
![{\displaystyle d(\beta \Phi )=d\left[\beta G-\sum _{i=2}^{c}(\beta \mu _{i1}N_{i})\right]=Ed\beta +Vd(\beta p)+\beta \mu _{1}dN-\sum _{i=2}^{c}N_{i}d(\beta \mu _{i1}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f9ecb6a938d9b13ec7be5a28a8ecdf34dd065651) 
Fixed pressure and temperature: Semi-grand ensemble: partition function
In the fixed composition ensemble one has:
![{\displaystyle Q_{N_{i},p,T}={\frac {\beta p}{\prod _{i=1}^{c}\left(\Lambda _{i}^{3N_{i}}N_{i}!\right)}}\int _{0}^{\infty }dVe^{-\beta pV}V^{N}\int \left(\prod _{i=1}^{c}d(R_{i}^{*})^{3N_{i}}\right)\exp \left[-\beta U\left(V,(R_{1}^{*})^{3N_{1}},\cdots \right)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/04e0111c9152df95a0f85133726f8a9fb4e1c809) 
References