Building up a diamond lattice: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| mNo edit summary | mNo edit summary | ||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| * Consider: | * Consider: | ||
| # a cubic simulation box whose sides are of length <math>\left. L  \right. </math> | # a cubic simulation box whose sides are of length <math>\left. L  \right. </math> | ||
| Line 34: | Line 32: | ||
| == Atomic position(s) on a cubic cell == | == Atomic position(s) on a cubic cell == | ||
| * Number of atoms per cell:  | * Number of atoms per cell: 8 | ||
| * Coordinates: | * Coordinates: | ||
| Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math> | Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math> | ||
| Line 40: | Line 38: | ||
| Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math> | Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math> | ||
| Atom 3: <math> \left( x_3, y_3,  | Atom 3: <math> \left( x_3, y_3, z_3 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) </math> | ||
| Atom 4: <math> \left( x_4, y_4,  | Atom 4: <math> \left( x_4, y_4, z_4 \right) = \left( \frac{l}{2}, \frac{l}{2}, 0  \right) </math> | ||
| Atom 5: <math> \left( x_5, y_5, z_5 \right) = \left( \frac{l}{4}, \frac{l}{4}, \frac{l}{4}  \right) </math> | |||
| Atom 6: <math> \left( x_6, y_6, z_6 \right) = \left( \frac{l}{4}, \frac{3l}{4}, \frac{3l}{4}  \right) </math> | |||
| Atom 7: <math> \left( x_7, y_7, z_7 \right) = \left( \frac{3l}{4}, \frac{l}{4}, \frac{3l}{4}  \right) </math> | |||
| Atom 8: <math> \left( x_8, y_8, z_8 \right) = \left( \frac{3l}{4}, \frac{3l}{4}, \frac{l}{4}  \right) </math> | |||
| Cell dimensions:   | Cell dimensions:   | ||
| Line 48: | Line 54: | ||
| *<math> \alpha = \beta = \gamma = 90^0 </math> | *<math> \alpha = \beta = \gamma = 90^0 </math> | ||
| [[category: computer simulation techniques]] | |||
Latest revision as of 11:00, 13 February 2008
- Consider:
- a cubic simulation box whose sides are of length
- a number of lattice positions, given by ,
with being a positive integer
- The positions are those given by:
where the indices of a given valid site are integer numbers that must fulfill the following criteria
- ,
- the sum of can have only the values: 0, 3, 4, 7, 8, 10, ...
i.e, ; OR; , with being any integer number
- the indices must be either all even or all odd.
with
Atomic position(s) on a cubic cell[edit]
- Number of atoms per cell: 8
- Coordinates:
Atom 1:
Atom 2:
Atom 3:
Atom 4:
Atom 5:
Atom 6:
Atom 7:
Atom 8:
Cell dimensions: